IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v5y2018i3d10.1007_s40745-018-0146-3.html
   My bibliography  Save this article

Development of Optimal ANN Model to Estimate the Thermal Performance of Roughened Solar Air Heater Using Two different Learning Algorithms

Author

Listed:
  • Harish Kumar Ghritlahre

    (National Institute of Technology)

  • Radha Krishna Prasad

    (National Institute of Technology)

Abstract

In the present study, artificial neural network (ANN) model has been developed with two different training algorithms to predict the thermal efficiency of wire rib roughened solar air heater. Total 50 sets of data have been taken from experiments with three different types of absorber plate. The experimental data and calculated values of collector efficiency were used to develop ANN model. Scaled conjugate gradient (SCG) and Levenberg–Marquardt (LM) learning algorithms were used. It has been found that TRAINLM with 6 neurons and TRAINSCG with 7 neurons is optimal model on the basis of statistical error analysis. The performance of both the models have been compared with actual data and found that TRAINLM performs better than TRAINSCG. The value of coefficient of determination $$(\hbox {R}^{2})$$ ( R 2 ) for LM-6 is 0.99882 which gives the satisfactory performance. Learning algorithm with LM based proposed MLP ANN model seems more reliable for predicting performance of solar air heater.

Suggested Citation

  • Harish Kumar Ghritlahre & Radha Krishna Prasad, 2018. "Development of Optimal ANN Model to Estimate the Thermal Performance of Roughened Solar Air Heater Using Two different Learning Algorithms," Annals of Data Science, Springer, vol. 5(3), pages 453-467, September.
  • Handle: RePEc:spr:aodasc:v:5:y:2018:i:3:d:10.1007_s40745-018-0146-3
    DOI: 10.1007/s40745-018-0146-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-018-0146-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-018-0146-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patil, Anil Kumar, 2015. "Heat transfer mechanism and energy efficiency of artificially roughened solar air heaters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 681-689.
    2. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    3. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2016. "Performance prediction of solid desiccant – Vapor compression hybrid air-conditioning system using artificial neural network," Energy, Elsevier, vol. 103(C), pages 618-629.
    4. Bhushan, Brij & Singh, Ranjit, 2010. "A review on methodology of artificial roughness used in duct of solar air heaters," Energy, Elsevier, vol. 35(1), pages 202-212.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harish Kumar Ghritlahre & Purvi Chandrakar & Ashfaque Ahmad, 2021. "A Comprehensive Review on Performance Prediction of Solar Air Heaters Using Artificial Neural Network," Annals of Data Science, Springer, vol. 8(3), pages 405-449, September.
    2. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    3. M. Sridharan, 2023. "Application of Generalized Regression Neural Network in Predicting the Performance of Solar Photovoltaic Thermal Water Collector," Annals of Data Science, Springer, vol. 10(1), pages 1-23, February.
    4. Manoj Verma & Harish Kumar Ghritlahre & Ghrithanchi Chandrakar, 2023. "Wind Speed Prediction of Central Region of Chhattisgarh (India) Using Artificial Neural Network and Multiple Linear Regression Technique: A Comparative Study," Annals of Data Science, Springer, vol. 10(4), pages 851-873, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    2. Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
    3. Ghritlahre, Harish Kumar & Prasad, Radha Krishna, 2018. "Application of ANN technique to predict the performance of solar collector systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 75-88.
    4. Harish Kumar Ghritlahre & Purvi Chandrakar & Ashfaque Ahmad, 2021. "A Comprehensive Review on Performance Prediction of Solar Air Heaters Using Artificial Neural Network," Annals of Data Science, Springer, vol. 8(3), pages 405-449, September.
    5. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "A new neural network model for evaluating the performance of various hourly slope irradiation models: Implementation for the region of Athens," Renewable Energy, Elsevier, vol. 35(7), pages 1357-1362.
    6. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal & Antonin Ponsich, 2019. "Feasibility Analysis and Performance Evaluation and Optimization of a DXSAHP Water Heater Based on the Thermal Capacity of the System: A Case Study," Energies, MDPI, vol. 12(20), pages 1-38, October.
    7. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    8. Abu Bakar, Nur Najihah & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Abdullah, Md Pauzi & Hussin, Faridah & Bandi, Masilah, 2015. "Energy efficiency index as an indicator for measuring building energy performance: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 1-11.
    9. Chen, W.D. & Vivekh, P. & Liu, M.Z. & Kumja, M. & Chua, K.J., 2021. "Energy improvement and performance prediction of desiccant coated dehumidifiers based on dimensional and scaling analysis," Applied Energy, Elsevier, vol. 303(C).
    10. Hannah Jessie Rani R. & Aruldoss Albert Victoire T., 2018. "Training radial basis function networks for wind speed prediction using PSO enhanced differential search optimizer," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-35, May.
    11. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    12. Hong, Ying-Yi & Chang, Huei-Lin & Chiu, Ching-Sheng, 2010. "Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs," Energy, Elsevier, vol. 35(9), pages 3870-3876.
    13. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    14. Colorado, D. & Hernández, J.A. & Rivera, W. & Martínez, H. & Juárez, D., 2011. "Optimal operation conditions for a single-stage heat transformer by means of an artificial neural network inverse," Applied Energy, Elsevier, vol. 88(4), pages 1281-1290, April.
    15. Kumar, Rajneesh & Goel, Varun & Kumar, Anoop, 2018. "Investigation of heat transfer augmentation and friction factor in triangular duct solar air heater due to forward facing chamfered rectangular ribs: A CFD based analysis," Renewable Energy, Elsevier, vol. 115(C), pages 824-835.
    16. Ramadas Narayanan & Subbu Sethuvenkatraman & Roberto Pippia, 2022. "Energy and Comfort Evaluation of Fresh Air-Based Hybrid Cooling System in Hot and Humid Climates," Energies, MDPI, vol. 15(20), pages 1-13, October.
    17. El-Sebaii, A.A. & Al-Snani, H., 2010. "Effect of selective coating on thermal performance of flat plate solar air heaters," Energy, Elsevier, vol. 35(4), pages 1820-1828.
    18. Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    19. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
    20. Wang, Jiangfeng & Sun, Zhixin & Dai, Yiping & Ma, Shaolin, 2010. "Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network," Applied Energy, Elsevier, vol. 87(4), pages 1317-1324, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:5:y:2018:i:3:d:10.1007_s40745-018-0146-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.