IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v5y2018i3d10.1007_s40745-018-0140-9.html
   My bibliography  Save this article

A New Approach for Improving Classification Accuracy in Predictive Discriminant Analysis

Author

Listed:
  • A. Iduseri

    (University of Benin)

  • J. E. Osemwenkhae

    (University of Benin)

Abstract

The focus of a predictive discriminant analysis is to improve classification accuracy, and to obtain statistically optimal classification accuracy or hit rate is still a challenge due to the inherent variability of most real life dataset. Improving classification accuracy is usually achieved with best subset of relevant predictors obtained by using classical variable selection methods. The goal of variable selection methods is to choose the best subset (or training sample) of relevant variables that typically reduces the complexity of a model and makes it easier to interpret, improves the classification accuracy of the model and reduces the training time. However, a statistically optimal hit rate can be achieved if the training sample meets a near optimal condition by resolving any significant differences in the variances for the groups formed by the dependent variable. This paper proposes a new approach for obtaining a near optimal training sample that will produce a statistically optimal hit rate using a modified winsorization with graphical diagnostic. In application to real life data sets, the proposed new approach was able to identify and remove legitimate contaminants in one or more predictors in the training sample, thereby resolving any significant differences in the variances for the groups formed by the dependent variable. The graphical diagnostic associated with the new approach, however, provides a useful visual tool which served as an alternative graphical test for homogeneity of variances.

Suggested Citation

  • A. Iduseri & J. E. Osemwenkhae, 2018. "A New Approach for Improving Classification Accuracy in Predictive Discriminant Analysis," Annals of Data Science, Springer, vol. 5(3), pages 339-357, September.
  • Handle: RePEc:spr:aodasc:v:5:y:2018:i:3:d:10.1007_s40745-018-0140-9
    DOI: 10.1007/s40745-018-0140-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-018-0140-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-018-0140-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sueyoshi, Toshiyuki, 1999. "DEA-discriminant analysis in the view of goal programming," European Journal of Operational Research, Elsevier, vol. 115(3), pages 564-582, June.
    2. Tomasz Smolarczyk & Katarzyna Stąpor & Piotr Fabian, 2016. "Heteroscedastic Discriminant Analysis Combined With Feature Selection For Credit Scoring," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 17(2), pages 265-280, June.
    3. Mary-Huard, Tristan & Robin, Stéphane & Daudin, Jean-Jacques, 2007. "A penalized criterion for variable selection in classification," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 695-705, April.
    4. Katarzyna Stąpor & Tomasz Smolarczyk & Piotr Fabian, 2016. "Heteroscedastic Discriminant Analysis Combined With Feature Selection For Credit Scoring," Statistics in Transition New Series, Polish Statistical Association, vol. 17(2), pages 265-280, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maugis, C. & Celeux, G. & Martin-Magniette, M.-L., 2011. "Variable selection in model-based discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1374-1387, November.
    2. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Environmental assessment on coal-fired power plants in U.S. north-east region by DEA non-radial measurement," Energy Economics, Elsevier, vol. 50(C), pages 125-139.
    3. Karasakal, Esra & Aker, Pınar, 2017. "A multicriteria sorting approach based on data envelopment analysis for R&D project selection problem," Omega, Elsevier, vol. 73(C), pages 79-92.
    4. Sueyoshi, Toshiyuki, 2006. "DEA-Discriminant Analysis: Methodological comparison among eight discriminant analysis approaches," European Journal of Operational Research, Elsevier, vol. 169(1), pages 247-272, February.
    5. Tang, Ming & Liao, Huchang, 2021. "From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey," Omega, Elsevier, vol. 100(C).
    6. Hatami-Marbini, Adel & Emrouznejad, Ali & Tavana, Madjid, 2011. "A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making," European Journal of Operational Research, Elsevier, vol. 214(3), pages 457-472, November.
    7. Sharon Hadad & Yossi Hadad & Tzahit Simon-Tuval, 2013. "Determinants of healthcare system’s efficiency in OECD countries," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(2), pages 253-265, April.
    8. Wang, Derek & Li, Shanling & Sueyoshi, Toshiyuki, 2014. "DEA environmental assessment on U.S. Industrial sectors: Investment for improvement in operational and environmental performance to attain corporate sustainability," Energy Economics, Elsevier, vol. 45(C), pages 254-267.
    9. C Kao & H-T Hung, 2005. "Data envelopment analysis with common weights: the compromise solution approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1196-1203, October.
    10. Sueyoshi, Toshiyuki & Goto, Mika, 2009. "Can R&D expenditure avoid corporate bankruptcy? Comparison between Japanese machinery and electric equipment industries using DEA-discriminant analysis," European Journal of Operational Research, Elsevier, vol. 196(1), pages 289-311, July.
    11. Ying Li & Yung-ho Chiu & Tai-Yu Lin & Yun Yuan Huang, 2019. "Market share and performance in Taiwanese banks: min/max SBM DEA," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 233-252, July.
    12. Soulef Smaoui & Belaid Aouni, 2017. "Fuzzy goal programming model for classification problems," Annals of Operations Research, Springer, vol. 251(1), pages 141-160, April.
    13. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "DEA environmental assessment in time horizon: Radial approach for Malmquist index measurement on petroleum companies," Energy Economics, Elsevier, vol. 51(C), pages 329-345.
    14. Yang, Chyan & Liu, Hsian-Ming, 2012. "Managerial efficiency in Taiwan bank branches: A network DEA," Economic Modelling, Elsevier, vol. 29(2), pages 450-461.
    15. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2021. "A review of DEA approaches applying a common set of weights: The perspective of centralized management," European Journal of Operational Research, Elsevier, vol. 294(1), pages 3-15.
    16. Sueyoshi, Toshiyuki & Qu, Jingjing & Li, Aijun & Liu, Xiaohong, 2021. "A new approach for evaluating technology inequality and diffusion barriers: The concept of efficiency Gini coefficient and its application in Chinese provinces," Energy, Elsevier, vol. 235(C).
    17. Sueyoshi, Toshiyuki, 2001. "Extended DEA-Discriminant Analysis," European Journal of Operational Research, Elsevier, vol. 131(2), pages 324-351, June.
    18. Sueyoshi, Toshiyuki & Goto, Mika, 2009. "Methodological comparison between DEA (data envelopment analysis) and DEA-DA (discriminant analysis) from the perspective of bankruptcy assessment," European Journal of Operational Research, Elsevier, vol. 199(2), pages 561-575, December.
    19. Tomoyuki Yagi & Masako Takahashi, 2016. "Business cycle turning points based on DEA-discriminant analysis," Applied Economics, Taylor & Francis Journals, vol. 48(44), pages 4251-4256, September.
    20. Sueyoshi, Toshiyuki & Goto, Mika, 2009. "DEA-DA for bankruptcy-based performance assessment: Misclassification analysis of Japanese construction industry," European Journal of Operational Research, Elsevier, vol. 199(2), pages 576-594, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:5:y:2018:i:3:d:10.1007_s40745-018-0140-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.