IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i1d10.1007_s10479-022-04842-w.html
   My bibliography  Save this article

A data-driven system for cooperative-bus route planning based on generative adversarial network and metric learning

Author

Listed:
  • Jiguang Wang

    (Tsinghua University
    Tsinghua University)

  • Yilun Zhang

    (Shanghai Jiao Tong University)

  • Xinjie Xing

    (University of Liverpool)

  • Yuanzhu Zhan

    (University of Birmingham)

  • Wai Kin Victor Chan

    (Tsinghua University
    Tsinghua University)

  • Sunil Tiwari

    (ESSCA School of Management)

Abstract

Faced with dynamic and increasingly diversified public transport requirements, bus operators are urged to propose operational innovations to sustain their competitiveness. In particular, ordinary bus operations are heavily constrained by well-established route options, and it is challenging to accommodate dynamic passenger flows effectively and with a good level of resource utilization performance. Inspired by the philosophy of sharing economy, many of the available transport resources on the road, such as minibuses and private vehicles, can offer opportunities for improvement if they can be effectively incorporated and exploited. In this regard, this paper proposes a metric learning-based prediction algorithm which can effectively capture the demand pattern and designs a route planning optimizer to help bus operators effectively deploy fixed routing and cooperative buses with traffic dynamics. Through extensive numerical studies, the performance of our proposed metric learning-based Generative Adversarial Network (GAN) prediction model outperforms existing ways. The effectiveness and robustness of the prediction-supported routing planner are well demonstrated for a real-time case. Further, managerial insights with regard to travel time, bus fleet size, and customer service levels are revealed by various sensitivity analysis.

Suggested Citation

  • Jiguang Wang & Yilun Zhang & Xinjie Xing & Yuanzhu Zhan & Wai Kin Victor Chan & Sunil Tiwari, 2024. "A data-driven system for cooperative-bus route planning based on generative adversarial network and metric learning," Annals of Operations Research, Springer, vol. 339(1), pages 427-453, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-04842-w
    DOI: 10.1007/s10479-022-04842-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04842-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04842-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angel Marín & Esteve Codina, 2008. "Network design: taxi planning," Annals of Operations Research, Springer, vol. 157(1), pages 135-151, January.
    2. Ralf Borndörfer & Martin Grötschel & Marc E. Pfetsch, 2007. "A Column-Generation Approach to Line Planning in Public Transport," Transportation Science, INFORMS, vol. 41(1), pages 123-132, February.
    3. Ajay Kumar & Ram D. Gopal & Ravi Shankar & Kim Hua Tan, 2022. "Fraudulent review detection model focusing on emotional expressions and explicit aspects : investigating the potential of feature engineering," Post-Print hal-03630420, HAL.
    4. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    5. Jiyoung Choi & Chungmok Lee & Sungsoo Park, 2018. "Dantzig–Wolfe decomposition approach to the vehicle assignment problem with demand uncertainty in a hybrid hub-and-spoke network," Annals of Operations Research, Springer, vol. 264(1), pages 57-87, May.
    6. Moshe Dror, 1994. "Note on the Complexity of the Shortest Path Models for Column Generation in VRPTW," Operations Research, INFORMS, vol. 42(5), pages 977-978, October.
    7. Ajay Kumar & Ravi Shankar & Alok Choudhary & Lakshman S. Thakur, 2016. "A big data MapReduce framework for fault diagnosis in cloud-based manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7060-7073, December.
    8. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    9. Banerjee, Nilabhra & Morton, Alec & Akartunalı, Kerem, 2020. "Passenger demand forecasting in scheduled transportation," European Journal of Operational Research, Elsevier, vol. 286(3), pages 797-810.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lian, Ying & Lucas, Flavien & Sörensen, Kenneth, 2024. "Prepositioning can improve the performance of a dynamic stochastic on-demand public bus system," European Journal of Operational Research, Elsevier, vol. 312(1), pages 338-356.
    2. Stacy A. Voccia & Ann Melissa Campbell & Barrett W. Thomas, 2019. "The Same-Day Delivery Problem for Online Purchases," Service Science, INFORMS, vol. 53(1), pages 167-184, February.
    3. Zahra Navidi & Nicole Ronald & Stephan Winter, 2018. "Comparison between ad-hoc demand responsive and conventional transit: a simulation study," Public Transport, Springer, vol. 10(1), pages 147-167, May.
    4. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    5. Regnier-Coudert, Olivier & McCall, John & Ayodele, Mayowa & Anderson, Steven, 2016. "Truck and trailer scheduling in a real world, dynamic and heterogeneous context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 389-408.
    6. van Engelen, Matti & Cats, Oded & Post, Henk & Aardal, Karen, 2018. "Enhancing flexible transport services with demand-anticipatory insertion heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 110-121.
    7. Konrad Steiner & Stefan Irnich, 2018. "Strategic Planning for Integrated Mobility-on-Demand and Urban Public Bus Networks," Working Papers 1819, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    8. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    9. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    10. Queiroz, Michell & Lucas, Flavien & Sörensen, Kenneth, 2024. "Instance generation tool for on-demand transportation problems," European Journal of Operational Research, Elsevier, vol. 317(3), pages 696-717.
    11. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    12. Kshitij Sharma & Yogesh K. Dwivedi & Bhimaraya Metri, 2024. "Incorporating causality in energy consumption forecasting using deep neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 537-572, August.
    13. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    14. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    15. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    16. Bruni, M.E. & Guerriero, F. & Beraldi, P., 2014. "Designing robust routes for demand-responsive transport systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 1-16.
    17. Ritzinger, Ulrike & Puchinger, Jakob & Rudloff, Christian & Hartl, Richard F., 2022. "Comparison of anticipatory algorithms for a dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 301(2), pages 591-608.
    18. Lucas Agussurja & Shih-Fen Cheng & Hoong Chuin Lau, 2019. "A State Aggregation Approach for Stochastic Multiperiod Last-Mile Ride-Sharing Problems," Service Science, INFORMS, vol. 53(1), pages 148-166, February.
    19. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    20. Kishore Bhoopalam, A. & Agatz, N.A.H. & Zuidwijk, R.A., 2017. "Planning of Truck Platoons: a Literature Review and Directions for Future Research," ERIM Report Series Research in Management ERS-2017-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-04842-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.