IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v338y2024i2d10.1007_s10479-024-06097-z.html
   My bibliography  Save this article

Solving the two-machine open shop problem with a single server with respect to the makespan

Author

Listed:
  • Nadia Babou

    (Université Mouloud Mammeri de Tizi-Ouzou
    Université des Sciences et de la Technologie Houari Boumédiène)

  • Djamal Rebaine

    (Université du Québec à Chicoutimi)

  • Mourad Boudhar

    (Université des Sciences et de la Technologie Houari Boumédiène)

Abstract

We address in this paper the two-machine open shop problem with a single server to prepare jobs before going through the processing so as to minimize the makespan. The server is only needed during the preparation phase before becoming available again, leaving the prepared job to complete its processing. We present three lower bounds with respect to the makespan. In addition, we show the $$\mathcal{N}\mathcal{P}$$ N P -completeness of two restricted cases. Then, we present a well solvable case. Finally, we develop two mixed integer linear programming (MILP) models for the general problem along with an experimental study we conducted to analyze their performance.

Suggested Citation

  • Nadia Babou & Djamal Rebaine & Mourad Boudhar, 2024. "Solving the two-machine open shop problem with a single server with respect to the makespan," Annals of Operations Research, Springer, vol. 338(2), pages 857-877, July.
  • Handle: RePEc:spr:annopr:v:338:y:2024:i:2:d:10.1007_s10479-024-06097-z
    DOI: 10.1007/s10479-024-06097-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06097-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06097-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allahverdi, Ali, 2015. "The third comprehensive survey on scheduling problems with setup times/costs," European Journal of Operational Research, Elsevier, vol. 246(2), pages 345-378.
    2. Ruiz, Ruben & Maroto, Concepcion & Alcaraz, Javier, 2005. "Solving the flowshop scheduling problem with sequence dependent setup times using advanced metaheuristics," European Journal of Operational Research, Elsevier, vol. 165(1), pages 34-54, August.
    3. Celia A. Glass & Yakov M. Shafransky & Vitaly A. Strusevich, 2000. "Scheduling for parallel dedicated machines with a single server," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(4), pages 304-328, June.
    4. Ammar Oulamara & Djamal Rebaine & Mehdi Serairi, 2013. "Scheduling the two-machine open shop problem under resource constraints for setting the jobs," Annals of Operations Research, Springer, vol. 211(1), pages 333-356, December.
    5. Averbakh, Igor & Berman, Oded & Chernykh, Ilya, 2005. "A -approximation algorithm for the two-machine routing open-shop problem on a two-node network," European Journal of Operational Research, Elsevier, vol. 166(1), pages 3-24, October.
    6. Allahverdi, Ali & Gupta, Jatinder N. D. & Aldowaisan, Tariq, 1999. "A review of scheduling research involving setup considerations," Omega, Elsevier, vol. 27(2), pages 219-239, April.
    7. Amina Haned & Abida Kerdali & Mourad Boudhar, 2024. "Scheduling on identical machines with preemption and setup times," International Journal of Production Research, Taylor & Francis Journals, vol. 62(1-2), pages 444-459, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.
    2. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    3. Rossit, Daniel Alejandro & Tohmé, Fernando & Frutos, Mariano, 2018. "The Non-Permutation Flow-Shop scheduling problem: A literature review," Omega, Elsevier, vol. 77(C), pages 143-153.
    4. Ahmadian, Mohammad Mahdi & Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2021. "Four decades of research on the open-shop scheduling problem to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 295(2), pages 399-426.
    5. Ravindran Vijayalakshmi, Vipin & Schröder, Marc & Tamir, Tami, 2024. "Minimizing total completion time with machine-dependent priority lists," European Journal of Operational Research, Elsevier, vol. 315(3), pages 844-854.
    6. Dirk Briskorn & Konrad Stephan & Nils Boysen, 2022. "Minimizing the makespan on a single machine subject to modular setups," Journal of Scheduling, Springer, vol. 25(1), pages 125-137, February.
    7. Mohammad Reza Hosseinzadeh & Mehdi Heydari & Mohammad Mahdavi Mazdeh, 2022. "Mathematical modeling and two metaheuristic algorithms for integrated process planning and group scheduling with sequence-dependent setup time," Operational Research, Springer, vol. 22(5), pages 5055-5105, November.
    8. Fátima Pilar & Eliana Costa e Silva & Ana Borges, 2023. "Optimizing Vehicle Repairs Scheduling Using Mixed Integer Linear Programming: A Case Study in the Portuguese Automobile Sector," Mathematics, MDPI, vol. 11(11), pages 1-23, June.
    9. Sheikh, Shaya & Komaki, G.M. & Kayvanfar, Vahid & Teymourian, Ehsan, 2019. "Multi-Stage assembly flow shop with setup time and release time," Operations Research Perspectives, Elsevier, vol. 6(C).
    10. Soares, Leonardo Cabral R. & Carvalho, Marco Antonio M., 2020. "Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 955-964.
    11. V. Anjana & R. Sridharan & P. N. Ram Kumar, 2020. "Metaheuristics for solving a multi-objective flow shop scheduling problem with sequence-dependent setup times," Journal of Scheduling, Springer, vol. 23(1), pages 49-69, February.
    12. F T Tseng & J N D Gupta & E F Stafford, 2006. "A penalty-based heuristic algorithm for the permutation flowshop scheduling problem with sequence-dependent set-up times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 541-551, May.
    13. Mina Roohnavazfar & Daniele Manerba & Lohic Fotio Tiotsop & Seyed Hamid Reza Pasandideh & Roberto Tadei, 2021. "Stochastic single machine scheduling problem as a multi-stage dynamic random decision process," Computational Management Science, Springer, vol. 18(3), pages 267-297, July.
    14. Felix Winter & Nysret Musliu, 2022. "A large neighborhood search approach for the paint shop scheduling problem," Journal of Scheduling, Springer, vol. 25(4), pages 453-475, August.
    15. Ruiz, Ruben & Maroto, Concepcion, 2006. "A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility," European Journal of Operational Research, Elsevier, vol. 169(3), pages 781-800, March.
    16. Dominik Kress & Maksim Barketau & Erwin Pesch, 2018. "Single-machine batch scheduling to minimize the total setup cost in the presence of deadlines," Journal of Scheduling, Springer, vol. 21(6), pages 595-606, December.
    17. Hinder, Oliver & Mason, Andrew J., 2017. "A novel integer programing formulation for scheduling with family setup times on a single machine to minimize maximum lateness," European Journal of Operational Research, Elsevier, vol. 262(2), pages 411-423.
    18. Morais, Rafael & Bulhões, Teobaldo & Subramanian, Anand, 2024. "Exact and heuristic algorithms for minimizing the makespan on a single machine scheduling problem with sequence-dependent setup times and release dates," European Journal of Operational Research, Elsevier, vol. 315(2), pages 442-453.
    19. Rauchecker, Gerhard & Schryen, Guido, 2019. "An exact branch-and-price algorithm for scheduling rescue units during disaster response," European Journal of Operational Research, Elsevier, vol. 272(1), pages 352-363.
    20. Rubén Ruiz & Ali Allahverdi, 2007. "Some effective heuristics for no-wait flowshops with setup times to minimize total completion time," Annals of Operations Research, Springer, vol. 156(1), pages 143-171, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:338:y:2024:i:2:d:10.1007_s10479-024-06097-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.