IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v326y2023i1d10.1007_s10479-023-05318-1.html
   My bibliography  Save this article

Infinite-server queueing tandem with Markovian arrival process and service depending on its state

Author

Listed:
  • Alexander Moiseev

    (Tomsk State University)

  • Maria Shklennik

    (Tomsk State University)

  • Evgeny Polin

    (Tomsk State University)

Abstract

We consider the infinite-server queueing tandem with the Markovian arrival process. The service time of requests at the first stage and the probability of their transition to the second stage are determined by the type of request that corresponds to the state of the arrival process at the time when the request arrived. A study of this system was performed under an asymptotic condition of a high rate of arrivals. A Gaussian approximation is obtained for the joint stationary probability distribution of the number of requests at the stages of the system under the condition. Based on this approximation, the problem of computing the optimal number of servers for specific values of model parameters is solved. Further, the obtained asymptotic result is extended to the case when a service at the second stage also depends on the request type, as well as on the case of systems with the number of stages greater than two.

Suggested Citation

  • Alexander Moiseev & Maria Shklennik & Evgeny Polin, 2023. "Infinite-server queueing tandem with Markovian arrival process and service depending on its state," Annals of Operations Research, Springer, vol. 326(1), pages 261-279, July.
  • Handle: RePEc:spr:annopr:v:326:y:2023:i:1:d:10.1007_s10479-023-05318-1
    DOI: 10.1007/s10479-023-05318-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05318-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05318-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Krishnamoorthy & S. Jaya & B. Lakshmy, 2015. "Queues with interruption in random environment," Annals of Operations Research, Springer, vol. 233(1), pages 201-219, October.
    2. Yonit Barron & David Perry & Wolfgang Stadje, 2016. "A make-to-stock production/inventory model with MAP arrivals and phase-type demands," Annals of Operations Research, Springer, vol. 241(1), pages 373-409, June.
    3. Anastasia Winkler, 2013. "Dynamic scheduling of a single-server two-class queue with constant retrial policy," Annals of Operations Research, Springer, vol. 202(1), pages 197-210, January.
    4. H. Zhang, 1999. "A multi‐class cyclic arrival queue with a single server," Annals of Operations Research, Springer, vol. 87(0), pages 333-350, April.
    5. H. M. Jansen & M. R. H. Mandjes & K. De Turck & S. Wittevrongel, 2016. "A large deviations principle for infinite-server queues in a random environment," Queueing Systems: Theory and Applications, Springer, vol. 82(1), pages 199-235, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sindhu S & Achyutha Krishnamoorthy & Dmitry Kozyrev, 2023. "A Two-Server Queue with Interdependence between Arrival and Service Processes," Mathematics, MDPI, vol. 11(22), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Dimitriou, 2016. "A queueing model with two classes of retrial customers and paired services," Annals of Operations Research, Springer, vol. 238(1), pages 123-143, March.
    2. Barron, Yonit, 2023. "A stochastic card balance management problem with continuous and batch-type bilateral transactions," Operations Research Perspectives, Elsevier, vol. 10(C).
    3. Ahmadi-Javid, Amir & Hoseinpour, Pooya, 2019. "Service system design for managing interruption risks: A backup-service risk-mitigation strategy," European Journal of Operational Research, Elsevier, vol. 274(2), pages 417-431.
    4. Walid W. Nasr, 2022. "Inventory systems with stochastic and batch demand: computational approaches," Annals of Operations Research, Springer, vol. 309(1), pages 163-187, February.
    5. Barron, Yonit, 2022. "The continuous (S,s,Se) inventory model with dual sourcing and emergency orders," European Journal of Operational Research, Elsevier, vol. 301(1), pages 18-38.
    6. Dmitry Efrosinin & Natalia Stepanova & Janos Sztrik, 2023. "Robustness of the cμ -Rule for an Unreliable Single-Server Two-Class Queueing System with Constant Retrial Rates," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
    7. Pablo Azcue & Esther Frostig & Nora Muler, 2023. "Optimal Strategies in a Production Inventory Control Model," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-43, March.
    8. Cheung, Eric C.K. & Rabehasaina, Landy & Woo, Jae-Kyung & Xu, Ran, 2019. "Asymptotic correlation structure of discounted Incurred But Not Reported claims under fractional Poisson arrival process," European Journal of Operational Research, Elsevier, vol. 276(2), pages 582-601.
    9. Won Seok Yang & Nam K. Kim & Sungjune Park & Chandrasekar Subramaniam, 2020. "Improving service in the presence of surge traffic: a K-policy voluntary flushing queueing system," Annals of Operations Research, Springer, vol. 295(1), pages 411-423, December.
    10. Ioannis Dimitriou, 2016. "A queueing model with two classes of retrial customers and paired services," Annals of Operations Research, Springer, vol. 238(1), pages 123-143, March.
    11. Baek, Jung Woo & Bae, Yun Han, 2022. "A queuing-inventory model for manufacturing systems with fluid-type inventory," Omega, Elsevier, vol. 111(C).
    12. Yiran Liu & Harsha Honnappa & Samy Tindel & Nung Kwan Yip, 2021. "Infinite server queues in a random fast oscillatory environment," Queueing Systems: Theory and Applications, Springer, vol. 98(1), pages 145-179, June.
    13. Tao Jiang & Liwei Liu & Yuanyuan Zhu, 2018. "Analysis of a Batch Service Polling System in a Multi-phase Random Environment," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 699-718, June.
    14. Sally McClean, 2021. "Using Markov Models to Characterize and Predict Process Target Compliance," Mathematics, MDPI, vol. 9(11), pages 1-12, May.
    15. Wenwen Li & Alexander Goldenshluger, 2024. "Adaptive minimax estimation of service time distribution in the $$M_t/G/\infty $$ M t / G / ∞ queue from departure data," Queueing Systems: Theory and Applications, Springer, vol. 108(1), pages 81-123, October.
    16. Dhanya Shajin & A. Krishnamoorthy & A. N. Dudin & Varghese C. Joshua & Varghese Jacob, 2020. "On a queueing-inventory system with advanced reservation and cancellation for the next K time frames ahead: the case of overbooking," Queueing Systems: Theory and Applications, Springer, vol. 94(1), pages 3-37, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:326:y:2023:i:1:d:10.1007_s10479-023-05318-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.