IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v320y2023i2d10.1007_s10479-021-04178-x.html
   My bibliography  Save this article

A decentralised multi-agent system for rail freight traffic management

Author

Listed:
  • Allan M. C. Bretas

    (The University of Newcastle)

  • Alexandre Mendes

    (The University of Newcastle)

  • Martin Jackson

    (Hunter Valley Coal Chain Coordinator)

  • Riley Clement

    (Hunter Valley Coal Chain Coordinator)

  • Claudio Sanhueza

    (Hunter Valley Coal Chain Coordinator)

  • Stephan Chalup

    (The University of Newcastle)

Abstract

The world’s largest coal export operation is located in New South Wales, Australia. The state has more than 87% of the coal transportation done through railways, and one of the strategies to increase throughput is the use of sophisticated computational techniques for rail traffic optimisation. The current state of the art shows a lack of practical applications, thus making scalability, decentralisation and real-world commitment three key research directions. Towards that, this research presents a simulation-based machine learning approach for the railway traffic management problem, in the context of the Hunter Valley Coal Chain (HVCC). We modelled trains, load points and terminals as autonomous intelligent agents that interact, learn and act independently—thus constituting a multi-agent system (MAS). The MAS is implemented on top of a rail network simulation model currently in use at the HVCC. The model is adapted as a decentralised partially-observed Markov decision process environment that allows multi-agent learning via a genetic algorithm. We present experiments with scenarios based on the actual rail network data, which show that the MAS outperforms the heuristic approach embedded in the HVCC simulation tool by up to 81% (in terms of the schedule’s total dwell time). Further to those experiments, a comparison analysis evaluates the relevance of specific state features (e.g. track length, train conflicts, etc.). Finally, an important outcome was that the agents have learned to overcome very complex traffic situations that appear in train scheduling operations and that sometimes result in unnecessarily long dwell times. This type of high level learning represents a significant step forward in the use of complex computational techniques for rail transportation problems.

Suggested Citation

  • Allan M. C. Bretas & Alexandre Mendes & Martin Jackson & Riley Clement & Claudio Sanhueza & Stephan Chalup, 2023. "A decentralised multi-agent system for rail freight traffic management," Annals of Operations Research, Springer, vol. 320(2), pages 631-661, January.
  • Handle: RePEc:spr:annopr:v:320:y:2023:i:2:d:10.1007_s10479-021-04178-x
    DOI: 10.1007/s10479-021-04178-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04178-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04178-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel S. Bernstein & Robert Givan & Neil Immerman & Shlomo Zilberstein, 2002. "The Complexity of Decentralized Control of Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 27(4), pages 819-840, November.
    2. Mascis, Alessandro & Pacciarelli, Dario, 2002. "Job-shop scheduling with blocking and no-wait constraints," European Journal of Operational Research, Elsevier, vol. 143(3), pages 498-517, December.
    3. Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
    4. Šemrov, D. & Marsetič, R. & Žura, M. & Todorovski, L. & Srdic, A., 2016. "Reinforcement learning approach for train rescheduling on a single-track railway," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 250-267.
    5. Michael Francis Gorman, 1998. "An application of genetic and tabu searches to the freight railroad operating plan problem," Annals of Operations Research, Springer, vol. 78(0), pages 51-69, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van Thielen, Sofie & Corman, Francesco & Vansteenwegen, Pieter, 2018. "Considering a dynamic impact zone for real-time railway traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 39-59.
    2. Jiateng Yin & Lixing Yang & Andrea D’Ariano & Tao Tang & Ziyou Gao, 2022. "Integrated Backup Rolling Stock Allocation and Timetable Rescheduling with Uncertain Time-Variant Passenger Demand Under Disruptive Events," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3234-3258, November.
    3. Cacchiani, Valentina & Furini, Fabio & Kidd, Martin Philip, 2016. "Approaches to a real-world Train Timetabling Problem in a railway node," Omega, Elsevier, vol. 58(C), pages 97-110.
    4. Michael Schachtebeck & Anita Schöbel, 2010. "To Wait or Not to Wait---And Who Goes First? Delay Management with Priority Decisions," Transportation Science, INFORMS, vol. 44(3), pages 307-321, August.
    5. Bettinelli, Andrea & Santini, Alberto & Vigo, Daniele, 2017. "A real-time conflict solution algorithm for the train rescheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 237-265.
    6. Corman, Francesco & D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2010. "A tabu search algorithm for rerouting trains during rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 175-192, January.
    7. Corman, F. & D’Ariano, A. & Pacciarelli, D. & Pranzo, M., 2012. "Optimal inter-area coordination of train rescheduling decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 71-88.
    8. Samà, Marcella & D’Ariano, Andrea & Pacciarelli, Dario, 2013. "Rolling horizon approach for aircraft scheduling in the terminal control area of busy airports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 140-155.
    9. Julia Lange & Frank Werner, 2018. "Approaches to modeling train scheduling problems as job-shop problems with blocking constraints," Journal of Scheduling, Springer, vol. 21(2), pages 191-207, April.
    10. Corman, Francesco & D’Ariano, Andrea & Marra, Alessio D. & Pacciarelli, Dario & Samà, Marcella, 2017. "Integrating train scheduling and delay management in real-time railway traffic control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 213-239.
    11. Zhang, Chuntian & Gao, Yuan & Cacchiani, Valentina & Yang, Lixing & Gao, Ziyou, 2023. "Train rescheduling for large-scale disruptions in a large-scale railway network," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    12. Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    13. Leonardo Lamorgese & Carlo Mannino & Mauro Piacentini, 2016. "Optimal Train Dispatching by Benders’-Like Reformulation," Transportation Science, INFORMS, vol. 50(3), pages 910-925, August.
    14. Elisabeth Lübbecke & Marco E. Lübbecke & Rolf H. Möhring, 2019. "Ship Traffic Optimization for the Kiel Canal," Operations Research, INFORMS, vol. 67(3), pages 791-812, May.
    15. M. Shakibayifar & A. Sheikholeslami & F. Corman & E. Hassannayebi, 2020. "An integrated rescheduling model for minimizing train delays in the case of line blockage," Operational Research, Springer, vol. 20(1), pages 59-87, March.
    16. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhong, Qingwei & Peng, Qiyuan, 2022. "Integrated rolling stock deadhead routing and timetabling in urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 298(2), pages 526-559.
    17. Jacomine Grobler & Andries Engelbrecht & Schalk Kok & Sarma Yadavalli, 2010. "Metaheuristics for the multi-objective FJSP with sequence-dependent set-up times, auxiliary resources and machine down time," Annals of Operations Research, Springer, vol. 180(1), pages 165-196, November.
    18. Yanling Chang & Alan Erera & Chelsea White, 2015. "Value of information for a leader–follower partially observed Markov game," Annals of Operations Research, Springer, vol. 235(1), pages 129-153, December.
    19. König, Eva & Schön, Cornelia, 2021. "Railway delay management with passenger rerouting considering train capacity constraints," European Journal of Operational Research, Elsevier, vol. 288(2), pages 450-465.
    20. Pellegrini, Paola & Marlière, Grégory & Rodriguez, Joaquin, 2014. "Optimal train routing and scheduling for managing traffic perturbations in complex junctions," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 58-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:320:y:2023:i:2:d:10.1007_s10479-021-04178-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.