Hamiltonian cycle curves in the space of discounted occupational measures
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-015-2030-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Vladimir Ejov & Jerzy A. Filar & Minh-Tuan Nguyen, 2004. "Hamiltonian Cycles and Singularly Perturbed Markov Chains," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 114-131, February.
- Richard M. Karp, 1977. "Probabilistic Analysis of Partitioning Algorithms for the Traveling-Salesman Problem in the Plane," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 209-224, August.
- Nelly Litvak & Vladimir Ejov, 2009. "Markov Chains and Optimality of the Hamiltonian Cycle," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 71-82, February.
- Brunacci, Francesco A., 1988. "DB2 and DB2A: Two useful tools for constructing Hamiltonian circuits," European Journal of Operational Research, Elsevier, vol. 34(2), pages 231-236, March.
- Ali Eshragh & Jerzy Filar, 2011. "Hamiltonian Cycles, Random Walks, and Discounted Occupational Measures," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 258-270, May.
- Jerzy A. Filar & Dmitry Krass, 1994. "Hamiltonian Cycles and Markov Chains," Mathematics of Operations Research, INFORMS, vol. 19(1), pages 223-237, February.
- Vladimir Ejov & Jerzy A. Filar & Michael Haythorpe & Giang T. Nguyen, 2009. "Refined MDP-Based Branch-and-Fix Algorithm for the Hamiltonian Cycle Problem," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 758-768, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ali Eshragh & Jerzy A. Filar & Thomas Kalinowski & Sogol Mohammadian, 2020. "Hamiltonian Cycles and Subsets of Discounted Occupational Measures," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 713-731, May.
- Ali Eshragh & Jerzy Filar, 2011. "Hamiltonian Cycles, Random Walks, and Discounted Occupational Measures," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 258-270, May.
- Vivek Borkar & Jerzy Filar, 2013. "Markov chains, Hamiltonian cycles and volumes of convex bodies," Journal of Global Optimization, Springer, vol. 55(3), pages 633-639, March.
- Nelly Litvak & Vladimir Ejov, 2009. "Markov Chains and Optimality of the Hamiltonian Cycle," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 71-82, February.
- Kusum Deep & Hadush Mebrahtu & Atulya K. Nagar, 2018. "Novel GA for metropolitan stations of Indian railways when modelled as a TSP," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(3), pages 639-645, June.
- Lenstra, J. K. & Rinnooy Kan, A. H. G., 1979. "Complexity Of Vehicle Routing And Scheduling Problems," Econometric Institute Archives 272191, Erasmus University Rotterdam.
- E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
- Joost Berkhout & Bernd F. Heidergott, 2019. "Analysis of Markov Influence Graphs," Operations Research, INFORMS, vol. 67(3), pages 892-904, May.
- Shoshana Anily, 1996. "The vehicle‐routing problem with delivery and back‐haul options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(3), pages 415-434, April.
- Carlos F. Daganzo & Karen R. Smilowitz, 2004. "Bounds and Approximations for the Transportation Problem of Linear Programming and Other Scalable Network Problems," Transportation Science, INFORMS, vol. 38(3), pages 343-356, August.
- Hirofumi Matsuo, 1990. "Cyclic sequencing problems in the two‐machine permutation flow shop: Complexity, worst‐case, and average‐case analysis," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(5), pages 679-694, October.
- Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
- Eugene A. Feinberg & Uriel G. Rothblum, 2012. "Splitting Randomized Stationary Policies in Total-Reward Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 37(1), pages 129-153, February.
- Awi Federgruen & Michal Tzur, 1999. "Time‐partitioning heuristics: Application to one warehouse, multiitem, multiretailer lot‐sizing problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(5), pages 463-486, August.
- Vladimir Ejov & Jerzy A. Filar & Michael Haythorpe & Giang T. Nguyen, 2009. "Refined MDP-Based Branch-and-Fix Algorithm for the Hamiltonian Cycle Problem," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 758-768, August.
- Zachariasen, Martin, 1999. "Local search for the Steiner tree problem in the Euclidean plane," European Journal of Operational Research, Elsevier, vol. 119(2), pages 282-300, December.
- Ali Eshragh & Jerzy Filar & Michael Haythorpe, 2011. "A hybrid simulation-optimization algorithm for the Hamiltonian cycle problem," Annals of Operations Research, Springer, vol. 189(1), pages 103-125, September.
- Daganzo, Carlos F. & Smilowitz, Karen R., 2000. "Asymptotic Approximations for the Transportation LP and Other Scalable Network Problems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3dn2j66w, Institute of Transportation Studies, UC Berkeley.
- Tzur, Michal & Drezner, Ehud, 2011. "A lookahead partitioning heuristic for a new assignment and scheduling problem in a distribution system," European Journal of Operational Research, Elsevier, vol. 215(2), pages 325-336, December.
- Paul Sutcliffe & Andrew Solomon & Jenny Edwards, 2012. "Computing the variance of tour costs over the solution space of the TSP in polynomial time," Computational Optimization and Applications, Springer, vol. 53(3), pages 711-728, December.
More about this item
Keywords
Hamiltonian cycle; Markov decision process; Occupational measure; Chebyshev polynomial; Regular graph;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:317:y:2022:i:2:d:10.1007_s10479-015-2030-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.