IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i11p1049-d283294.html
   My bibliography  Save this article

A Novel System Reliability Modeling of Hardware, Software, and Interactions of Hardware and Software

Author

Listed:
  • Mengmeng Zhu

    (Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27606, USA)

  • Hoang Pham

    (Department of Industrial and Systems Engineering, Rutgers University, Piscataway, NJ 08854, USA)

Abstract

In the past few decades, a great number of hardware and software reliability models have been proposed to address hardware failures in hardware subsystems and software failures in software subsystems, respectively. The interactions between hardware and software subsystems are often neglected in order to simplify reliability modeling, and hence, most existing reliability models assumed hardware subsystems and software subsystem are independent of each other. However, this may not be true in reality. In this study, system failures are classified into three categories, which are hardware failures, software failures, and hardware-software interaction failures. The main contribution of our research is that we further classify hardware-software interaction failures into two groups: software-induced hardware failures and hardware-induced software failures. A Markov-based unified system reliability modeling incorporating all three categories of system failures is developed in this research, which provides a novel and practical perspective to define system failures and further improve reliability prediction accuracy. Comparison of system reliability estimation between the reliability models with and without considering hardware-software interactions is elucidated in the numerical example. The impacts on system reliability prediction as the changes of transition parameters are also illustrated by the numerical examples.

Suggested Citation

  • Mengmeng Zhu & Hoang Pham, 2019. "A Novel System Reliability Modeling of Hardware, Software, and Interactions of Hardware and Software," Mathematics, MDPI, vol. 7(11), pages 1-14, November.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1049-:d:283294
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/11/1049/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/11/1049/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hoang Pham, 2006. "Software Reliability Modeling," Springer Series in Reliability Engineering, in: System Software Reliability, chapter 5, pages 153-177, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanbo Song & Xiaoyue Wang, 2022. "Reliability Analysis of the Multi-State k -out-of- n : F Systems with Multiple Operation Mechanisms," Mathematics, MDPI, vol. 10(23), pages 1-16, December.
    2. Nupur Goyal & Vikas Kumar Roy & Mangey Ram, 2022. "Mathematical modelling of embedded systems under network failures," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 604-614, April.
    3. Mengmeng Zhu, 2022. "A new framework of complex system reliability with imperfect maintenance policy," Annals of Operations Research, Springer, vol. 312(1), pages 553-579, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Ming & Wu, Shaomin, 2019. "A comprehensive analysis of warranty claims and optimal policies," European Journal of Operational Research, Elsevier, vol. 276(1), pages 144-159.
    2. Mengmeng Zhu, 2022. "A new framework of complex system reliability with imperfect maintenance policy," Annals of Operations Research, Springer, vol. 312(1), pages 553-579, May.
    3. Nupur Goyal & Vikas Kumar Roy & Mangey Ram, 2022. "Mathematical modelling of embedded systems under network failures," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 604-614, April.
    4. Sourav Sinha & Neeraj Kumar Goyal & Rajib Mall, 2019. "Survey of combined hardware–software reliability prediction approaches from architectural and system failure viewpoint," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 453-474, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1049-:d:283294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.