IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v309y2022i1d10.1007_s10479-021-04191-0.html
   My bibliography  Save this article

A stochastic bi-objective simulation–optimization model for cascade disaster location-allocation-distribution problems

Author

Listed:
  • Kaveh Khalili-Damghani

    (South-Tehran Branch, Islamic Azad University)

  • Madjid Tavana

    (La Salle University
    University of Paderborn)

  • Peiman Ghasemi

    (Islamic Azad University)

Abstract

Cascade disasters can destroy urban infrastructures, kill thousands of people, and permanently displace millions of people. The paramount goal of disaster relief programs is to save lives, reduce financial loss, and accelerate the relief process. This study proposes a bi-level two-echelon mathematical model to minimize pre-disaster costs and maximize post-disaster relief coverage area. The model uses a geographic information system (GIS) to classify the disaster area and determine the optimal number and location of distribution centers while minimizing the relief supplies’ inventory costs. A simulation model is used to estimate the demand for relief supplies. Initially, vulnerable urban infrastructures are identified, and then the interaction among them is investigated for cascade disasters. The aims of this study are threefold: (1) to identify vulnerable urban infrastructures in cascade disasters, (2) to prioritize urban areas based on the severity of cascade disasters using a GIS, and (3) to develop a bi-objective multi-echelon multi-supplies mathematical model for location, allocation, and distribution of relief supplies under uncertainty. The model is solved with an epsilon-constraint method for small and medium-scale problems and the invasive weed optimization algorithm for large-scale problems. A case study is presented to demonstrate the applicability and efficacy of the proposed method. The results confirm the difficulty of relief operations during the night as the cost of night-time relief operations is higher than daytime. In addition, the results show the coverage area increases as the demand surges. Therefore, establishing more distribution centers will increase operating costs and expand coverage are.

Suggested Citation

  • Kaveh Khalili-Damghani & Madjid Tavana & Peiman Ghasemi, 2022. "A stochastic bi-objective simulation–optimization model for cascade disaster location-allocation-distribution problems," Annals of Operations Research, Springer, vol. 309(1), pages 103-141, February.
  • Handle: RePEc:spr:annopr:v:309:y:2022:i:1:d:10.1007_s10479-021-04191-0
    DOI: 10.1007/s10479-021-04191-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04191-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04191-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arslan, Okan & Kumcu, Gül Çulhan & Kara, Bahar Yetiş & Laporte, Gilbert, 2021. "The location and location-routing problem for the refugee camp network design," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 201-220.
    2. German A. Velasquez & Maria E. Mayorga & Osman Y. Özaltın, 2020. "Prepositioning disaster relief supplies using robust optimization," IISE Transactions, Taylor & Francis Journals, vol. 52(10), pages 1122-1140, October.
    3. Hasani, Aliakbar & Mokhtari, Hadi, 2018. "Redesign strategies of a comprehensive robust relief network for disaster management," Socio-Economic Planning Sciences, Elsevier, vol. 64(C), pages 92-102.
    4. Tavana, Madjid & Abtahi, Amir-Reza & Di Caprio, Debora & Hashemi, Reza & Yousefi-Zenouz, Reza, 2018. "An integrated location-inventory-routing humanitarian supply chain network with pre- and post-disaster management considerations," Socio-Economic Planning Sciences, Elsevier, vol. 64(C), pages 21-37.
    5. Jihai Zhang & Zhile Wang & Fan Ren, 2019. "Optimization of humanitarian relief supply chain reliability: a case study of the Ya’an earthquake," Annals of Operations Research, Springer, vol. 283(1), pages 1551-1572, December.
    6. Ghasemi, Peiman & Khalili-Damghani, Kaveh & Hafezalkotob, Ashkan & Raissi, Sadigh, 2019. "Uncertain multi-objective multi-commodity multi-period multi-vehicle location-allocation model for earthquake evacuation planning," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 105-132.
    7. Erbeyoğlu, Gökalp & Bilge, Ümit, 2020. "A robust disaster preparedness model for effective and fair disaster response," European Journal of Operational Research, Elsevier, vol. 280(2), pages 479-494.
    8. Elçi, Özgün & Noyan, Nilay, 2018. "A chance-constrained two-stage stochastic programming model for humanitarian relief network design," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 55-83.
    9. Doan, Xuan Vinh & Shaw, Duncan, 2019. "Resource allocation when planning for simultaneous disasters," European Journal of Operational Research, Elsevier, vol. 274(2), pages 687-709.
    10. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    11. Caunhye, Aakil M. & Li, Mingzhe & Nie, Xiaofeng, 2015. "A location-allocation model for casualty response planning during catastrophic radiological incidents," Socio-Economic Planning Sciences, Elsevier, vol. 50(C), pages 32-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gang Wang, 2024. "Disaster relief supply chain network planning under uncertainty," Annals of Operations Research, Springer, vol. 338(2), pages 1127-1156, July.
    2. Afshin Kamyabniya & Antoine Sauré & F. Sibel Salman & Noureddine Bénichou & Jonathan Patrick, 2024. "Optimization models for disaster response operations: a literature review," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 737-783, September.
    3. Shaoren Wang & Yenchun Jim Wu & Ruiting Li, 2022. "An Improved Genetic Algorithm for Location Allocation Problem with Grey Theory in Public Health Emergencies," IJERPH, MDPI, vol. 19(15), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Ghasemi, Peiman & Khalili-Damghani, Kaveh, 2021. "A robust simulation-optimization approach for pre-disaster multi-period location–allocation–inventory planning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 69-95.
    3. Ghasemi, Peiman & Khalili-Damghani, Kaveh & Hafezalkotob, Ashkan & Raissi, Sadigh, 2020. "Stochastic optimization model for distribution and evacuation planning (A case study of Tehran earthquake)," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    4. Chen, Yingzhen & Zhao, Qiuhong & Huang, Kai & Xi, Xunzhuo, 2022. "A Bi-objective optimization model for contract design of humanitarian relief goods procurement considering extreme disasters," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    5. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    6. Liu, Kanglin & Zhang, Hengliang & Zhang, Zhi-Hai, 2021. "The efficiency, equity and effectiveness of location strategies in humanitarian logistics: A robust chance-constrained approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    7. Xuehong Gao, 2022. "A bi-level stochastic optimization model for multi-commodity rebalancing under uncertainty in disaster response," Annals of Operations Research, Springer, vol. 319(1), pages 115-148, December.
    8. Afshin Kamyabniya & Antoine Sauré & F. Sibel Salman & Noureddine Bénichou & Jonathan Patrick, 2024. "Optimization models for disaster response operations: a literature review," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 737-783, September.
    9. Khouloud Dorgham & Issam Nouaouri & Jean-Christophe Nicolas & Gilles Goncalves, 2022. "Collaborative hospital supply chain network design problem under uncertainty," Operational Research, Springer, vol. 22(5), pages 4607-4640, November.
    10. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    11. Shengjie Long & Dezhi Zhang & Shuangyan Li & Shuanglin Li, 2023. "Two-Stage Multi-Objective Stochastic Model on Patient Transfer and Relief Distribution in Lockdown Area of COVID-19," IJERPH, MDPI, vol. 20(3), pages 1-25, January.
    12. Pouraliakbari-Mamaghani, Mahsa & Saif, Ahmed & Kamal, Noreen, 2023. "Reliable design of a congested disaster relief network: A two-stage stochastic-robust optimization approach," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    13. Vahdani, Behnam & Veysmoradi, D. & Mousavi, S.M. & Amiri, M., 2022. "Planning for relief distribution, victim evacuation, redistricting and service sharing under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    14. Akbarpour, Mina & Ali Torabi, S. & Ghavamifar, Ali, 2020. "Designing an integrated pharmaceutical relief chain network under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    15. Sheikholeslami, Mahnaz & Zarrinpoor, Naeme, 2023. "Designing an integrated humanitarian logistics network for the preparedness and response phases under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    16. Wang, Duo & Yang, Kai & Yuen, Kum Fai & Yang, Lixing & Dong, Jianjun, 2024. "Hybrid risk-averse location-inventory-allocation with secondary disaster considerations in disaster relief logistics: A distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    17. He, Xiaozhou & Wang, Qingyi, 2023. "A location-routing model for free-floating shared bike collection considering manual gathering and truck transportation," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    18. Oscar Rodríguez-Espíndola, 2023. "Two-stage stochastic formulation for relief operations with multiple agencies in simultaneous disasters," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 477-523, June.
    19. Khalili-Fard, Alireza & Hashemi, Mojgan & Bakhshi, Alireza & Yazdani, Maziar & Jolai, Fariborz & Aghsami, Amir, 2024. "Integrated relief pre-positioning and procurement planning considering non-governmental organizations support and perishable relief items in a humanitarian supply chain network," Omega, Elsevier, vol. 127(C).
    20. Maharjan, Rajali & Hanaoka, Shinya, 2020. "A credibility-based multi-objective temporary logistics hub location-allocation model for relief supply and distribution under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:309:y:2022:i:1:d:10.1007_s10479-021-04191-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.