Increasing flexibility and productivity in Industry 4.0 production networks with autonomous mobile robots and smart intralogistics
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-020-03526-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dmitry Ivanov & Ajay Das & Tsan-Ming Choi, 2018. "New flexibility drivers for manufacturing, supply chain and service operations," International Journal of Production Research, Taylor & Francis Journals, vol. 56(10), pages 3359-3368, May.
- Noroozi, Sayeh & Wikner, Joakim, 2017. "Sales and operations planning in the process industry: A literature review," International Journal of Production Economics, Elsevier, vol. 188(C), pages 139-155.
- Dmitry Ivanov & Alexandre Dolgui, 2019. "Low-Certainty-Need (LCN) supply chains: a new perspective in managing disruption risks and resilience," International Journal of Production Research, Taylor & Francis Journals, vol. 57(15-16), pages 5119-5136, August.
- Fosso Wamba, Samuel & Akter, Shahriar & Edwards, Andrew & Chopin, Geoffrey & Gnanzou, Denis, 2015. "How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study," International Journal of Production Economics, Elsevier, vol. 165(C), pages 234-246.
- Dolgui, Alexandre & Guschinsky, Nikolai & Levin, Genrikh, 2006. "A special case of transfer lines balancing by graph approach," European Journal of Operational Research, Elsevier, vol. 168(3), pages 732-746, February.
- Lars Zschorn & Steve Müller & Dmitry Ivanov, 2017. "Capacity planning on key work stations in a hybrid MTO-ETO production system: a case-study on Siemens AG," International Journal of Inventory Research, Inderscience Enterprises Ltd, vol. 4(2/3), pages 214-232.
- Ferrara, Andrea & Gebennini, Elisa & Grassi, Andrea, 2014. "Fleet sizing of laser guided vehicles and pallet shuttles in automated warehouses," International Journal of Production Economics, Elsevier, vol. 157(C), pages 7-14.
- Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov, 2019. "The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics," International Journal of Production Research, Taylor & Francis Journals, vol. 57(3), pages 829-846, February.
- Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Frank Werner & Marina Ivanova, 2016. "A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory industry 4.0," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 386-402, January.
- El-Ghazali Talbi, 2016. "Combining metaheuristics with mathematical programming, constraint programming and machine learning," Annals of Operations Research, Springer, vol. 240(1), pages 171-215, May.
- Amaia Lusa, 2008. "A survey of the literature on the multiple or parallel assembly line balancing problem," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 2(1), pages 50-72.
- Cavalcante, Ian M. & Frazzon, Enzo M. & Forcellini, Fernando A. & Ivanov, Dmitry, 2019. "A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing," International Journal of Information Management, Elsevier, vol. 49(C), pages 86-97.
- Yong Yin & Kathryn E. Stecke & Dongni Li, 2018. "The evolution of production systems from Industry 2.0 through Industry 4.0," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 848-861, January.
- PL.K. Palaniappan & N. Jawahar, 2010. "Integration of procurement and production scheduling in flexible flow-line assembly," International Journal of Integrated Supply Management, Inderscience Enterprises Ltd, vol. 5(4), pages 344-364.
- Samuel Fosso Wamba & Angappa Gunasekaran & Rameshwar Dubey & Eric W. T. Ngai, 2018. "Big data analytics in operations and supply chain management," Annals of Operations Research, Springer, vol. 270(1), pages 1-4, November.
- Tharma Ganesharajah & Nicholas Hall & Chelliah Sriskandarajah, 1998. "Design and operational issues in AGV-served manufacturing systems," Annals of Operations Research, Springer, vol. 76(0), pages 109-154, January.
- Izabela Nielsen & Quang-Vinh Dang & Grzegorz Bocewicz & Zbigniew Banaszak, 2017. "A methodology for implementation of mobile robot in adaptive manufacturing environments," Journal of Intelligent Manufacturing, Springer, vol. 28(5), pages 1171-1188, June.
- J. Smith, 2015. "Optimal workload allocation in closed queueing networks with state dependent queues," Annals of Operations Research, Springer, vol. 231(1), pages 157-183, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Onifade, Moshood & Adebisi, John Adetunji & Shivute, Amtenge Penda & Genc, Bekir, 2023. "Challenges and applications of digital technology in the mineral industry," Resources Policy, Elsevier, vol. 85(PB).
- Tsan-Ming Choi & Alexandre Dolgui & Dmitry Ivanov & Erwin Pesch, 2022. "OR and analytics for digital, resilient, and sustainable manufacturing 4.0," Annals of Operations Research, Springer, vol. 310(1), pages 1-6, March.
- Rialti, Riccardo & Filieri, Raffaele, 2024. "Leaders, let’s get agile! Observing agile leadership in successful digital transformation projects," Business Horizons, Elsevier, vol. 67(4), pages 439-452.
- Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.
- Kovacs, Oliver, 2024. "Exaptationary Industry 4.0: Graphene as pathfinder?," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
- Nwaila, Glen T. & Frimmel, Hartwig E. & Zhang, Steven E. & Bourdeau, Julie E. & Tolmay, Leon C.K. & Durrheim, Raymond J. & Ghorbani, Yousef, 2022. "The minerals industry in the era of digital transition: An energy-efficient and environmentally conscious approach," Resources Policy, Elsevier, vol. 78(C).
- Dabić, Marina & Maley, Jane F. & Črešnar, Rok & Nedelko, Zlatko, 2023. "Unappreciated channel of manufacturing productivity under industry 4.0: Leadership values and capabilities," Journal of Business Research, Elsevier, vol. 162(C).
- Özköse, Hakan & Güney, Gül, 2023. "The effects of industry 4.0 on productivity: A scientific mapping study," Technology in Society, Elsevier, vol. 75(C).
- Abderahman Rejeb & Andrea Appolloni, 2022. "The Nexus of Industry 4.0 and Circular Procurement: A Systematic Literature Review and Research Agenda," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
- Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
- Issam Laguir & Sachin Modgil & Indranil Bose & Shivam Gupta & Rebecca Stekelorum, 2023. "Performance effects of analytics capability, disruption orientation, and resilience in the supply chain under environmental uncertainty," Annals of Operations Research, Springer, vol. 324(1), pages 1269-1293, May.
- Shraddha Mishra & Surya Prakash Singh, 2022. "A stochastic disaster-resilient and sustainable reverse logistics model in big data environment," Annals of Operations Research, Springer, vol. 319(1), pages 853-884, December.
- Alexander Pavlov & Dmitry Ivanov & Frank Werner & Alexandre Dolgui & Boris Sokolov, 2022. "Integrated detection of disruption scenarios, the ripple effect dispersal and recovery paths in supply chains," Annals of Operations Research, Springer, vol. 319(1), pages 609-631, December.
- Efpraxia D. Zamani & Conn Smyth & Samrat Gupta & Denis Dennehy, 2023. "Artificial intelligence and big data analytics for supply chain resilience: a systematic literature review," Annals of Operations Research, Springer, vol. 327(2), pages 605-632, August.
- Frank, Alejandro Germán & Dalenogare, Lucas Santos & Ayala, Néstor Fabián, 2019. "Industry 4.0 technologies: Implementation patterns in manufacturing companies," International Journal of Production Economics, Elsevier, vol. 210(C), pages 15-26.
- Dmitry Ivanov & Boris Sokolov, 2019. "Simultaneous structural–operational control of supply chain dynamics and resilience," Annals of Operations Research, Springer, vol. 283(1), pages 1191-1210, December.
- Núñez-Merino, Miguel & Maqueira-Marín, Juan Manuel & Moyano-Fuentes, José & Castaño-Moraga, Carlos Alberto, 2022. "Industry 4.0 and supply chain. A Systematic Science Mapping analysis," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
- Maciel M. Queiroz & Dmitry Ivanov & Alexandre Dolgui & Samuel Fosso Wamba, 2022. "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1159-1196, December.
- Ivanov, Dmitry & Dolgui, Alexandre & Sokolov, Boris, 2022. "Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
- Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
- Zhitao Xu & Adel Elomri & Roberto Baldacci & Laoucine Kerbache & Zhenyong Wu, 2024. "Frontiers and trends of supply chain optimization in the age of industry 4.0: an operations research perspective," Annals of Operations Research, Springer, vol. 338(2), pages 1359-1401, July.
- Dou, Runliang & Liu, Xin & Hou, Yanchao & Wei, Yixin, 2024. "Mitigating closed-loop supply chain risk through assessment of production cost, disruption cost, and reliability," International Journal of Production Economics, Elsevier, vol. 270(C).
- Guilherme Luz Tortorella & Anupama Prashar & Jiju Antony & Flavio S. Fogliatto & Vicente Gonzalez & Moacir Godinho Filho, 2024. "Industry 4.0 adoption for healthcare supply chain performance during COVID-19 pandemic in Brazil and India: the mediating role of resilience abilities development," Operations Management Research, Springer, vol. 17(2), pages 389-405, June.
- Frank, Alejandro G. & Mendes, Glauco H.S. & Ayala, Néstor F. & Ghezzi, Antonio, 2019. "Servitization and Industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 341-351.
- Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Bryde, David J. & Giannakis, Mihalis & Foropon, Cyril & Roubaud, David & Hazen, Benjamin T., 2020. "Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations," International Journal of Production Economics, Elsevier, vol. 226(C).
- Lipika Bhattacharya & Ayan Chatterjee & Debmallya Chatterjee, 2023. "Critical Enablers that Mitigate Supply Chain Disruption: A Perspective from Indian MSMEs," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 48(1), pages 42-63, February.
- Shivam Gupta & Sachin Modgil & Samadrita Bhattacharyya & Indranil Bose, 2022. "Artificial intelligence for decision support systems in the field of operations research: review and future scope of research," Annals of Operations Research, Springer, vol. 308(1), pages 215-274, January.
- K. Katsaliaki & P. Galetsi & S. Kumar, 2022. "Supply chain disruptions and resilience: a major review and future research agenda," Annals of Operations Research, Springer, vol. 319(1), pages 965-1002, December.
More about this item
Keywords
Autonomous mobile robots; Artificial Intelligence; Cloud manufacturing; Production network; Production line; Performance; Flexibility; Industry 4.0;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:308:y:2022:i:1:d:10.1007_s10479-020-03526-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.