IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v298y2021i1d10.1007_s10479-018-2763-9.html
   My bibliography  Save this article

Reactive and proactive single-machine scheduling to maintain a maximum number of starting times

Author

Listed:
  • Philippe Chrétienne

    (Sorbonne Universités, Université Pierre et Marie Curie)

Abstract

This paper considers, in the single-machine scheduling context, the reactive and proactive problems arising when, due to unpredictable events between the time a baseline scheduled has been planned and the time the schedule must be implemented, the job durations may have increased so that the baseline schedule is no longer feasible. In the reactive case, the baseline schedule is known, the real job durations are known and we search for a schedule of the real instance that maximizes the number of jobs started at the same date in both schedules, this maximum being called the reactive gain. We show that, in the non-preemptive case, the corresponding decision problem is NP-complete in the strong sense while in the discrete preemptive case, it can be polynomially solved. In the proactive case, the real job durations are only known to belong to an uncertainty domain and we search for a baseline schedule that maximizes the worst reactive gain over the uncertainty domain. We show that the corresponding decision problem is NP-complete in the non-preemptive case while it is quite easy in the discrete preemptive case.

Suggested Citation

  • Philippe Chrétienne, 2021. "Reactive and proactive single-machine scheduling to maintain a maximum number of starting times," Annals of Operations Research, Springer, vol. 298(1), pages 111-124, March.
  • Handle: RePEc:spr:annopr:v:298:y:2021:i:1:d:10.1007_s10479-018-2763-9
    DOI: 10.1007/s10479-018-2763-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-2763-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-2763-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Minoux, 2011. "On 2-stage robust LP with RHS uncertainty: complexity results and applications," Journal of Global Optimization, Springer, vol. 49(3), pages 521-537, March.
    2. Herroelen, Willy & Leus, Roel, 2004. "The construction of stable project baseline schedules," European Journal of Operational Research, Elsevier, vol. 156(3), pages 550-565, August.
    3. Bendotti, Pascale & Chrétienne, Philippe & Fouilhoux, Pierre & Quilliot, Alain, 2017. "Anchored reactive and proactive solutions to the CPM-scheduling problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 67-74.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bendotti, Pascale & Chrétienne, Philippe & Fouilhoux, Pierre & Pass-Lanneau, Adèle, 2021. "Dominance-based linear formulation for the Anchor-Robust Project Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 22-33.
    2. Bruni, M.E. & Di Puglia Pugliese, L. & Beraldi, P. & Guerriero, F., 2017. "An adjustable robust optimization model for the resource-constrained project scheduling problem with uncertain activity durations," Omega, Elsevier, vol. 71(C), pages 66-84.
    3. Philippe Chrétienne, 2020. "Maximizing the number of jobs scheduled at their baseline starting times in case of machine failures," Journal of Scheduling, Springer, vol. 23(1), pages 135-143, February.
    4. Morteza Davari & Erik Demeulemeester, 2019. "The proactive and reactive resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 22(2), pages 211-237, April.
    5. Idir Hamaz & Laurent Houssin & Sonia Cafieri, 2018. "A robust basic cyclic scheduling problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 291-313, September.
    6. Bendotti, Pascale & Chrétienne, Philippe & Fouilhoux, Pierre & Quilliot, Alain, 2017. "Anchored reactive and proactive solutions to the CPM-scheduling problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 67-74.
    7. Bowman, R. Alan, 2006. "Developing activity duration specification limits for effective project control," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1191-1204, October.
    8. Krumke, Sven O. & Schmidt, Eva & Streicher, Manuel, 2019. "Robust multicovers with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 274(3), pages 845-857.
    9. Andreas Thorsen & Tao Yao, 2017. "Robust inventory control under demand and lead time uncertainty," Annals of Operations Research, Springer, vol. 257(1), pages 207-236, October.
    10. Van de Vonder, Stijn & Demeulemeester, Erik & Herroelen, Willy & Leus, Roel, 2005. "The use of buffers in project management: The trade-off between stability and makespan," International Journal of Production Economics, Elsevier, vol. 97(2), pages 227-240, August.
    11. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    12. Dimitris Bertsimas & Frans J. C. T. de Ruiter, 2016. "Duality in Two-Stage Adaptive Linear Optimization: Faster Computation and Stronger Bounds," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 500-511, August.
    13. Balouka, Noemie & Cohen, Izack, 2021. "A robust optimization approach for the multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 291(2), pages 457-470.
    14. Wei Chen & Ying Zhao & Yangqing Yu & Kaiman Chen & Mehrdad Arashpour, 2020. "Collaborative Scheduling of On-Site and Off-Site Operations in Prefabrication," Sustainability, MDPI, vol. 12(21), pages 1-21, November.
    15. Olivier Lambrechts & Erik Demeulemeester & Willy Herroelen, 2011. "Time slack-based techniques for robust project scheduling subject to resource uncertainty," Annals of Operations Research, Springer, vol. 186(1), pages 443-464, June.
    16. Mattia, Sara & Rossi, Fabrizio & Servilio, Mara & Smriglio, Stefano, 2017. "Staffing and scheduling flexible call centers by two-stage robust optimization," Omega, Elsevier, vol. 72(C), pages 25-37.
    17. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    18. Song, Jie & Martens, Annelies & Vanhoucke, Mario, 2021. "Using Schedule Risk Analysis with resource constraints for project control," European Journal of Operational Research, Elsevier, vol. 288(3), pages 736-752.
    19. Mehdi Karimi & Somayeh Moazeni & Levent Tunçel, 2018. "A Utility Theory Based Interactive Approach to Robustness in Linear Optimization," Journal of Global Optimization, Springer, vol. 70(4), pages 811-842, April.
    20. Szmerekovsky, Joseph G. & Venkateshan, Prahalad & Simonson, Peter D., 2023. "Project scheduling under the threat of catastrophic disruption," European Journal of Operational Research, Elsevier, vol. 309(2), pages 784-794.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:298:y:2021:i:1:d:10.1007_s10479-018-2763-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.