IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1899-d345035.html
   My bibliography  Save this article

A Long-Term Evaluation on Transmission Line Expansion Planning with Multistage Stochastic Programming

Author

Listed:
  • Sini Han

    (Department of Electrical Engineering, Konkuk University, Seoul 05029, Korea)

  • Hyeon-Jin Kim

    (Department of Electrical Engineering, Konkuk University, Seoul 05029, Korea)

  • Duehee Lee

    (Department of Electrical Engineering, Konkuk University, Seoul 05029, Korea)

Abstract

The purpose of this paper is to apply multistage stochastic programming to the transmission line expansion planning problem, especially when uncertain demand scenarios exist. Since the problem of transmission line expansion planning requires an intensive computational load, dual decomposition is used to decompose the problem into smaller problems. Following this, progressive hedging and proximal bundle methods are used to restore the decomposed solutions to the original problems. Mixed-integer linear programming is involved in the problem to decide where new transmission lines should be constructed or reinforced. However, integer variables in multistage stochastic programming (MSSP) are intractable since integer variables are not restored. Therefore, the branch-and-bound algorithm is applied to multistage stochastic programming methods to force convergence of integer variables.In addition, this paper suggests combining progressive hedging and dual decomposition in stochastic integer programming by sharing penalty parameters. The simulation results tested on the IEEE 30-bus system verify that our combined model sped up the computation and achieved higher accuracy by achieving the minimised cost.

Suggested Citation

  • Sini Han & Hyeon-Jin Kim & Duehee Lee, 2020. "A Long-Term Evaluation on Transmission Line Expansion Planning with Multistage Stochastic Programming," Energies, MDPI, vol. 13(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1899-:d:345035
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1899/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1899/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Sheng-Tung & Kuo, Hsiao-I & Chen, Chi-Chung, 2007. "The relationship between GDP and electricity consumption in 10 Asian countries," Energy Policy, Elsevier, vol. 35(4), pages 2611-2621, April.
    2. Luis M. Abadie & José M. Chamorro, 2011. "Valuing Expansions of the Electricity Transmission Network under Uncertainty: The Binodal Case," Energies, MDPI, vol. 4(10), pages 1-32, October.
    3. Jean-Paul Watson & David Woodruff, 2011. "Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems," Computational Management Science, Springer, vol. 8(4), pages 355-370, November.
    4. Francisco Munoz & Jean-Paul Watson, 2015. "A scalable solution framework for stochastic transmission and generation planning problems," Computational Management Science, Springer, vol. 12(4), pages 491-518, October.
    5. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    6. Martínez-Lao, Juan & Montoya, Francisco G. & Montoya, Maria G. & Manzano-Agugliaro, Francisco, 2017. "Electric vehicles in Spain: An overview of charging systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 970-983.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yilin Xie & Ying Xu, 2022. "Transmission Expansion Planning Considering Wind Power and Load Uncertainties," Energies, MDPI, vol. 15(19), pages 1-18, September.
    2. Gengli Song & Hua Wei, 2022. "Distributionally Robust Multi-Energy Dynamic Optimal Power Flow Considering Water Spillage with Wasserstein Metric," Energies, MDPI, vol. 15(11), pages 1-18, May.
    3. Hamdi Abdi & Mansour Moradi & Sara Lumbreras, 2021. "Metaheuristics and Transmission Expansion Planning: A Comparative Case Study," Energies, MDPI, vol. 14(12), pages 1-23, June.
    4. Alexander Vinogradov & Vadim Bolshev & Alina Vinogradova & Michał Jasiński & Tomasz Sikorski & Zbigniew Leonowicz & Radomir Goňo & Elżbieta Jasińska, 2020. "Analysis of the Power Supply Restoration Time after Failures in Power Transmission Lines," Energies, MDPI, vol. 13(11), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xinyi & Shen, Xinwei & Guo, Qinglai & Sun, Hongbin & Oren, Shmuel S., 2020. "A stochastic distribution system planning method considering regulation services and energy storage degradation," Applied Energy, Elsevier, vol. 277(C).
    2. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
    3. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    4. Kevin Ryan & Shabbir Ahmed & Santanu S. Dey & Deepak Rajan & Amelia Musselman & Jean-Paul Watson, 2020. "Optimization-Driven Scenario Grouping," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 805-821, July.
    5. Fan, Yingjie & Schwartz, Frank & Voß, Stefan, 2017. "Flexible supply chain planning based on variable transportation modes," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 654-666.
    6. Gilles Bareilles & Yassine Laguel & Dmitry Grishchenko & Franck Iutzeler & Jérôme Malick, 2020. "Randomized Progressive Hedging methods for multi-stage stochastic programming," Annals of Operations Research, Springer, vol. 295(2), pages 535-560, December.
    7. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    8. Zhicheng Zhu & Yisha Xiang & Bo Zeng, 2021. "Multicomponent Maintenance Optimization: A Stochastic Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 898-914, July.
    9. Yongxi (Eric) Huang & Yueyue Fan & Chien-Wei Chen, 2014. "An Integrated Biofuel Supply Chain to Cope with Feedstock Seasonality and Uncertainty," Transportation Science, INFORMS, vol. 48(4), pages 540-554, November.
    10. Kazemi Zanjani, Masoumeh & Sanei Bajgiran, Omid & Nourelfath, Mustapha, 2016. "A hybrid scenario cluster decomposition algorithm for supply chain tactical planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 252(2), pages 466-476.
    11. Fan, Yueyue & Huang, Yongxi & Chen, Chien-Wei, 2012. "Multistage Infrastructure System Design: An Integrated Biofuel Supply Chain against Feedstock Seasonality and Uncertainty," Institute of Transportation Studies, Working Paper Series qt9g8413m5, Institute of Transportation Studies, UC Davis.
    12. Cristian Camilo Marín-Cano & Juan Esteban Sierra-Aguilar & Jesús M. López-Lezama & Álvaro Jaramillo-Duque & Juan G. Villegas, 2020. "A Novel Strategy to Reduce Computational Burden of the Stochastic Security Constrained Unit Commitment Problem," Energies, MDPI, vol. 13(15), pages 1-19, July.
    13. Can Li & Ignacio E. Grossmann, 2019. "A finite $$\epsilon $$ϵ-convergence algorithm for two-stage stochastic convex nonlinear programs with mixed-binary first and second-stage variables," Journal of Global Optimization, Springer, vol. 75(4), pages 921-947, December.
    14. Bismark Singh & Bernard Knueven, 2021. "Lagrangian relaxation based heuristics for a chance-constrained optimization model of a hybrid solar-battery storage system," Journal of Global Optimization, Springer, vol. 80(4), pages 965-989, August.
    15. Nur Banu Demir & Serhat Gul & Melih Çelik, 2021. "A stochastic programming approach for chemotherapy appointment scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 112-133, February.
    16. Fadda, Edoardo & Perboli, Guido & Tadei, Roberto, 2019. "A progressive hedging method for the optimization of social engagement and opportunistic IoT problems," European Journal of Operational Research, Elsevier, vol. 277(2), pages 643-652.
    17. Aghalari, Amin & Nur, Farjana & Marufuzzaman, Mohammad, 2021. "Solving a stochastic inland waterway port management problem using a parallelized hybrid decomposition algorithm," Omega, Elsevier, vol. 102(C).
    18. Huang, Zhouchun & Zheng, Qipeng Phil, 2020. "A multistage stochastic programming approach for preventive maintenance scheduling of GENCOs with natural gas contract," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1036-1051.
    19. Sushil R. Poudel & Md Abdul Quddus & Mohammad Marufuzzaman & Linkan Bian & Reuben F. Burch V, 2019. "Managing congestion in a multi-modal transportation network under biomass supply uncertainty," Annals of Operations Research, Springer, vol. 273(1), pages 739-781, February.
    20. Kai Pan & Yongpei Guan, 2022. "Integrated Stochastic Optimal Self-Scheduling for Two-Settlement Electricity Markets," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1819-1840, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1899-:d:345035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.