IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v261y2018i1d10.1007_s10479-017-2640-y.html
   My bibliography  Save this article

Predispatch of hydroelectric power systems with modifications in network topologies

Author

Listed:
  • S. M. S. Carvalho

    (Federal University of São Carlos)

  • A. R. L. Oliveira

    (University of Campinas (UNICAMP))

  • C. Lyra

    (University of Campinas (UNICAMP))

Abstract

Electric grids are operated to ensure the provision and supply of electric power under suitable conditions at a minimum cost. However, the need for maintenance and repairs to equipment and transmission lines employed in the electric grid is constant and increasingly frequent; therefore, studies are necessary in the operational area in order to analyze and to enable the required services. Manipulations in an electric grid are necessary in order to allow preventive or corrective maintenance on the grid, thereby ensuring system operability. In this study, the primal-dual interior-point methods are used to minimize costs and losses in a predispatch model for the generation and transmission of direct current (DC) power flow in a hydroelectric system with pre-programmed manipulations; i.e., in cases of preventive maintenance, within a period of 24 h. From the computational standpoint, the effort required to solve a problem with and without manipulations is similar, and the reasons why will be also discussed in this study. Computational results corroborates these findings.

Suggested Citation

  • S. M. S. Carvalho & A. R. L. Oliveira & C. Lyra, 2018. "Predispatch of hydroelectric power systems with modifications in network topologies," Annals of Operations Research, Springer, vol. 261(1), pages 135-153, February.
  • Handle: RePEc:spr:annopr:v:261:y:2018:i:1:d:10.1007_s10479-017-2640-y
    DOI: 10.1007/s10479-017-2640-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2640-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2640-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. A. Terry & M. V. F. Pereira & T. A. Araripe Neto & L. F. C. A. Silva & P. R. H. Sales, 1986. "Coordinating the Energy Generation of the Brazilian National Hydrothermal Electrical Generating System," Interfaces, INFORMS, vol. 16(1), pages 16-38, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drouin, Nicol & Gautier, Antoine & Lamond, Bernard F. & Lang, Pascal, 1996. "Piecewise affine approximations for the control of a one-reservoir hydroelectric system," European Journal of Operational Research, Elsevier, vol. 89(1), pages 53-69, February.
    2. Liping Li & Pan Liu & David Rheinheimer & Chao Deng & Yanlai Zhou, 2014. "Identifying Explicit Formulation of Operating Rules for Multi-Reservoir Systems Using Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1545-1565, April.
    3. Huang, Xu & Maçaira, Paula Medina & Hassani, Hossein & Cyrino Oliveira, Fernando Luiz & Dhesi, Gurjeet, 2019. "Hydrological natural inflow and climate variables: Time and frequency causality analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 480-495.
    4. Shapiro, Alexander & Tekaya, Wajdi & da Costa, Joari Paulo & Soares, Murilo Pereira, 2013. "Risk neutral and risk averse Stochastic Dual Dynamic Programming method," European Journal of Operational Research, Elsevier, vol. 224(2), pages 375-391.
    5. Pan Liu & Shenglian Guo & Xiaowei Xu & Jionghong Chen, 2011. "Derivation of Aggregation-Based Joint Operating Rule Curves for Cascade Hydropower Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3177-3200, October.
    6. Andre Luiz Diniz & Maria Elvira P. Maceira & Cesar Luis V. Vasconcellos & Debora Dias J. Penna, 2020. "A combined SDDP/Benders decomposition approach with a risk-averse surface concept for reservoir operation in long term power generation planning," Annals of Operations Research, Springer, vol. 292(2), pages 649-681, September.
    7. Ignacio Marín Cruz & Mohamed Badaoui & Ricardo Mota Palomino, 2023. "Medium-Term Hydrothermal Scheduling of the Infiernillo Reservoir Using Stochastic Dual Dynamic Programming (SDDP): A Case Study in Mexico," Energies, MDPI, vol. 16(17), pages 1-26, August.
    8. Steve Batstone & Geoff Pritchard & Golbon Zakeri, 2016. "Noninvasive Test Scheduling in Live Electricity Markets at Transpower New Zealand," Interfaces, INFORMS, vol. 46(6), pages 482-492, December.
    9. Ferreira, Pedro Guilherme Costa & Oliveira, Fernando Luiz Cyrino & Souza, Reinaldo Castro, 2015. "The stochastic effects on the Brazilian Electrical Sector," Energy Economics, Elsevier, vol. 49(C), pages 328-335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:261:y:2018:i:1:d:10.1007_s10479-017-2640-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.