IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6288-d1228289.html
   My bibliography  Save this article

Medium-Term Hydrothermal Scheduling of the Infiernillo Reservoir Using Stochastic Dual Dynamic Programming (SDDP): A Case Study in Mexico

Author

Listed:
  • Ignacio Marín Cruz

    (Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional, Av. Luis Enrique Erro s/n, Ciudad de México 07738, Mexico)

  • Mohamed Badaoui

    (Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional, Av. Luis Enrique Erro s/n, Ciudad de México 07738, Mexico)

  • Ricardo Mota Palomino

    (Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional, Av. Luis Enrique Erro s/n, Ciudad de México 07738, Mexico)

Abstract

This article aims to obtain and evaluate medium-term operating policies for the hydrothermal scheduling problem by using the stochastic dual dynamic programming (SDDP) approach. To this end, to feed the mathematical model and build the probability distribution functions that best fit each month of the actual inflow volume, monthly inflow data recorded from 1938 to 2018 for the Infiernillo reservoir located in Mexico were employed. Moreover, we simulated inflow volume scenarios using the Monte Carlo method for each month of a one-year planning period. The SDDP approach to solving the optimization problem consisted of the simulation of one forward scenario per iteration and the stabilization of the total operating cost as a convergence criterion, which results in an operating policy. We then assessed its quality by estimating the one-sided optimality gap. It is worth mentioning that the best operation policy required scenario trees of up to 17,000 inflow realizations per stage. Additionally, to study the evolution of the expected value along the planning horizon of the main variables involved in the medium-term hydrothermal scheduling problem, we simulated the best operation policy over 10,000 inflow scenarios. Finally, to show the practical value of the proposed approach, we report its computational complexity.

Suggested Citation

  • Ignacio Marín Cruz & Mohamed Badaoui & Ricardo Mota Palomino, 2023. "Medium-Term Hydrothermal Scheduling of the Infiernillo Reservoir Using Stochastic Dual Dynamic Programming (SDDP): A Case Study in Mexico," Energies, MDPI, vol. 16(17), pages 1-26, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6288-:d:1228289
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6288/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6288/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andy Philpott & Vitor de Matos & Erlon Finardi, 2013. "On Solving Multistage Stochastic Programs with Coherent Risk Measures," Operations Research, INFORMS, vol. 61(4), pages 957-970, August.
    2. Suvrajeet Sen & Julia L. Higle, 1999. "An Introductory Tutorial on Stochastic Linear Programming Models," Interfaces, INFORMS, vol. 29(2), pages 33-61, April.
    3. L. A. Terry & M. V. F. Pereira & T. A. Araripe Neto & L. F. C. A. Silva & P. R. H. Sales, 1986. "Coordinating the Energy Generation of the Brazilian National Hydrothermal Electrical Generating System," Interfaces, INFORMS, vol. 16(1), pages 16-38, February.
    4. Andrieu, L. & Henrion, R. & Römisch, W., 2010. "A model for dynamic chance constraints in hydro power reservoir management," European Journal of Operational Research, Elsevier, vol. 207(2), pages 579-589, December.
    5. José L. Ceciliano-Meza & Juan Álvarez López & Armando De la Torre Sánchez & Rolando Nieva Gómez & Isaías Guillén Moya & Roberto Navarro Pérez & Favio Perales Martínez & César Torres Ruiz & Anselmo Sán, 2016. "Power System Operator in Mexico Reveals Millions in Savings by Updating Its Short-Term Thermal Unit Commitment Model," Interfaces, INFORMS, vol. 46(6), pages 493-502, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andre Luiz Diniz & Maria Elvira P. Maceira & Cesar Luis V. Vasconcellos & Debora Dias J. Penna, 2020. "A combined SDDP/Benders decomposition approach with a risk-averse surface concept for reservoir operation in long term power generation planning," Annals of Operations Research, Springer, vol. 292(2), pages 649-681, September.
    2. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    3. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    4. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    5. Alois Pichler & Ruben Schlotter, 2020. "Quantification of Risk in Classical Models of Finance," Papers 2004.04397, arXiv.org, revised Feb 2021.
    6. M Kumral, 2011. "Incorporating geo-metallurgical information into mine production scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 60-68, January.
    7. Sandoval, Diego & Goffin, Philippe & Leibundgut, Hansjürg, 2017. "How low exergy buildings and distributed electricity storage can contribute to flexibility within the demand side," Applied Energy, Elsevier, vol. 187(C), pages 116-127.
    8. Gregory A. Godfrey & Warren B. Powell, 2001. "An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution," Management Science, INFORMS, vol. 47(8), pages 1101-1112, August.
    9. Drouin, Nicol & Gautier, Antoine & Lamond, Bernard F. & Lang, Pascal, 1996. "Piecewise affine approximations for the control of a one-reservoir hydroelectric system," European Journal of Operational Research, Elsevier, vol. 89(1), pages 53-69, February.
    10. Moret, Fabio & Pinson, Pierre & Papakonstantinou, Athanasios, 2020. "Heterogeneous risk preferences in community-based electricity markets," European Journal of Operational Research, Elsevier, vol. 287(1), pages 36-48.
    11. Stephan Nagl & Michaela Fürsch & Dietmar Lindenberger, 2013. "The Costs of Electricity Systems with a High Share of Fluctuating Renewables: A Stochastic Investment and Dispatch Optimization Model for Europe," The Energy Journal, , vol. 34(4), pages 151-180, October.
    12. Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
    13. A. B. Philpott & V. L. Matos & L. Kapelevich, 2018. "Distributionally robust SDDP," Computational Management Science, Springer, vol. 15(3), pages 431-454, October.
    14. Chen, Zhen & Archibald, Thomas W., 2024. "Maximizing the survival probability in a cash flow inventory problem with a joint service level constraint," International Journal of Production Economics, Elsevier, vol. 270(C).
    15. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    16. Garnier, Josselin & Omrane, Abdennebi & Rouchdy, Youssef, 2009. "Asymptotic formulas for the derivatives of probability functions and their Monte Carlo estimations," European Journal of Operational Research, Elsevier, vol. 198(3), pages 848-858, November.
    17. Liping Li & Pan Liu & David Rheinheimer & Chao Deng & Yanlai Zhou, 2014. "Identifying Explicit Formulation of Operating Rules for Multi-Reservoir Systems Using Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1545-1565, April.
    18. Haodong Yu & Jie Sun & Yanjun Wang, 2021. "A time-consistent Benders decomposition method for multistage distributionally robust stochastic optimization with a scenario tree structure," Computational Optimization and Applications, Springer, vol. 79(1), pages 67-99, May.
    19. Pedro Borges, 2022. "Cut-sharing across trees and efficient sequential sampling for SDDP with uncertainty in the RHS," Computational Optimization and Applications, Springer, vol. 82(3), pages 617-647, July.
    20. Reus, Lorenzo & Pagnoncelli, Bernardo & Armstrong, Margaret, 2019. "Better management of production incidents in mining using multistage stochastic optimization," Resources Policy, Elsevier, vol. 63(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6288-:d:1228289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.