IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v258y2017i1d10.1007_s10479-017-2406-6.html
   My bibliography  Save this article

A semi-supervised inattention detection method using biological signal

Author

Listed:
  • Yerim Choi

    (Kyonggi University)

  • Jonghun Park

    (Seoul National University)

  • Dongmin Shin

    (Hanyang University)

Abstract

Recently, operations research methods have been utilized for biological data analysis as a huge amount of biological data becomes available. One of popular applications of the data analysis is inattention detection of operators in human–machine interaction systems using electroencephalography (EEG) signal. Most of the previous studies on the inattention detection employed supervised learning approaches, but their results have potential bias since they rely on imperfect assumptions for the acquisition of mental state labels, attention and inattention, due to the absence of the standardized measure for the mental states. Instead, we consider unsupervised learning approach, where no labeled data is required. In order to address the low performance of unsupervised learning approaches, attention duration for which an operator sustains his/her attention from the beginning of performing a task and relevance levels between four attributes of EEG signal and mental states are exploited. In this regard, we propose a semi-supervised inattention detection method (SID), in which attention duration and attributes-weights of EEG signal are respectively utilized as a small portion of labeled data for semi-supervised learning and weights for similarity calculation. Specifically, cumulative sum algorithm is used for the determination of the attention duration, and constrained attributes-weighting clustering algorithm is used for the estimation of attributes-weights. From experiments using real-world dataset, SID outperformed the compared methods, and it is expected that the adoption of SID will contribute to the enhancement of the operators’ safety.

Suggested Citation

  • Yerim Choi & Jonghun Park & Dongmin Shin, 2017. "A semi-supervised inattention detection method using biological signal," Annals of Operations Research, Springer, vol. 258(1), pages 59-78, November.
  • Handle: RePEc:spr:annopr:v:258:y:2017:i:1:d:10.1007_s10479-017-2406-6
    DOI: 10.1007/s10479-017-2406-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2406-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2406-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sangyeol Lee & Jeongcheol Ha & Okyoung Na & Seongryong Na, 2003. "The Cusum Test for Parameter Change in Time Series Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(4), pages 781-796, December.
    2. Wanpracha Chaovalitwongse & Oleg Prokopyev & Panos Pardalos, 2006. "Electroencephalogram (EEG) time series classification: Applications in epilepsy," Annals of Operations Research, Springer, vol. 148(1), pages 227-250, November.
    3. Venkatesh Balasubramanian & K. Adalarasu & A. Gupta, 2011. "EEG based analysis of cognitive fatigue during simulated driving," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 7(2), pages 135-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    2. Lucia Reis Peixoto Roselli & Leydiana de Sousa Pereira & Anderson Lucas Carneiro de Lima Silva & Adiel Teixeira Almeida & Danielle Costa Morais & Ana Paula Cabral Seixas Costa, 2020. "Neuroscience experiment applied to investigate decision-maker behavior in the tradeoff elicitation procedure," Annals of Operations Research, Springer, vol. 289(1), pages 67-84, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lajos Horvath & Lorenzo Trapani, 2021. "Changepoint detection in random coefficient autoregressive models," Papers 2104.13440, arXiv.org.
    2. Selim Amrouni & Aymeric Moulin & Tucker Balch, 2022. "CTMSTOU driven markets: simulated environment for regime-awareness in trading policies," Papers 2202.00941, arXiv.org, revised Feb 2022.
    3. Fuxiao Li & Mengli Hao & Lijuan Yang, 2021. "Structural change detection in ordinal time series," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-16, August.
    4. Maekawa, Koichi & Lee, Sangyeol & Morimoto, Takayuki & Kawai, Ken-ichi, 2008. "Jump diffusion model with application to the Japanese stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 223-236.
    5. Junmo Song & Sangyeol Lee, 2009. "Test for parameter change in discretely observed diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 12(2), pages 165-183, June.
    6. Jirak, Moritz, 2012. "Change-point analysis in increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 136-159.
    7. Okyoung Na & Jiyeon Lee & Sangyeol Lee, 2013. "Change point detection in SCOMDY models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(3), pages 215-238, July.
    8. Maria Mohr & Natalie Neumeyer, 2021. "Nonparametric volatility change detection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 529-548, June.
    9. Sangyeol Lee & Okyoung Na, 2005. "Test for parameter change based on the estimator minimizing density-based divergence measures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 553-573, September.
    10. Mamadou Lamine Diop & William Kengne, 2023. "A general procedure for change-point detection in multivariate time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 1-33, March.
    11. Vanessa Berenguer-Rico & Bent Nielsen, 2015. "Cumulated sum of squares statistics for non-linear and non-stationary regressions," Economics Papers 2015-W09, Economics Group, Nuffield College, University of Oxford.
    12. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    13. Rafajlowicz, Ewaryst & Pawlak, Mirosław & Steland, Ansgar, 2004. "Non-parametric vertical box control chart for monitoring the mean," Technical Reports 2004,52, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    14. Habibi Reza, 2011. "A note on approximating distribution functions of cusum and cusumsq tests," Monte Carlo Methods and Applications, De Gruyter, vol. 17(1), pages 1-10, January.
    15. Lee, Sangyeol, 2013. "A maximum entropy type test of fit: Composite hypothesis case," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 59-67.
    16. Josephine Njeri Ngure & Anthony Gichuhi Waititu, 2021. "Consistency of an Estimator for Change Point in Volatility of Financial Returns," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 13(1), pages 1-56, February.
    17. Frisén, Marianne & Andersson, Eva & Schiöler, Linus, 2009. "Sufficient reduction in multivariate surveillance," Research Reports 2009:2, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    18. Lee, Sangyeol & Park, Siyun, 2009. "The monitoring test for the stability of regression models with nonstationary regressors," Economics Letters, Elsevier, vol. 105(3), pages 250-252, December.
    19. Wanpracha Chaovalitwongse, 2009. "Comments on: Optimization and data mining in medicine," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 247-249, December.
    20. Lindeløv, Jonas Kristoffer, 2020. "mcp: An R Package for Regression With Multiple Change Points," OSF Preprints fzqxv, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:258:y:2017:i:1:d:10.1007_s10479-017-2406-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.