IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0256128.html
   My bibliography  Save this article

Structural change detection in ordinal time series

Author

Listed:
  • Fuxiao Li
  • Mengli Hao
  • Lijuan Yang

Abstract

Change-point detection in health care data has recently obtained considerable attention due to the increased availability of complex data in real-time. In many applications, the observed data is an ordinal time series. Two kinds of test statistics are proposed to detect the structural change of cumulative logistic regression model, which is often used in applications for the analysis of ordinal time series. One is the standardized efficient score vector, the other one is the quadratic form of the efficient score vector with a weight function. Under the null hypothesis, we derive the asymptotic distribution of the two test statistics, and prove the consistency under the alternative hypothesis. We also study the consistency of the change-point estimator, and a binary segmentation procedure is suggested for estimating the locations of possible multiple change-points. Simulation results show that the former statistic performs better when the change-point occurs at the centre of the data, but the latter is preferable when the change-point occurs at the beginning or end of the data. Furthermore, the former statistic could find the reason for rejecting the null hypothesis. Finally, we apply the two test statistics to a group of sleep data, the results show that there exists a structural change in the data.

Suggested Citation

  • Fuxiao Li & Mengli Hao & Lijuan Yang, 2021. "Structural change detection in ordinal time series," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-16, August.
  • Handle: RePEc:plo:pone00:0256128
    DOI: 10.1371/journal.pone.0256128
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256128
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0256128&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0256128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    2. Sangyeol Lee & Jeongcheol Ha & Okyoung Na & Seongryong Na, 2003. "The Cusum Test for Parameter Change in Time Series Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(4), pages 781-796, December.
    3. Chen, Zhanshou & Jin, Zi & Tian, Zheng & Qi, Peiyan, 2012. "Bootstrap testing multiple changes in persistence for a heavy-tailed sequence," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2303-2316.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martins, Luis F. & Rodrigues, Paulo M.M., 2014. "Testing for persistence change in fractionally integrated models: An application to world inflation rates," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 502-522.
    2. Deng, Ai & Perron, Pierre, 2008. "The Limit Distribution Of The Cusum Of Squares Test Under General Mixing Conditions," Econometric Theory, Cambridge University Press, vol. 24(3), pages 809-822, June.
    3. Marco Barassi & Lajos Horváth & Yuqian Zhao, 2020. "Change‐Point Detection in the Conditional Correlation Structure of Multivariate Volatility Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 340-349, April.
    4. Ai Deng & Pierre Perron, 2005. "The Limit Distribution of the CUSUM of Square Test Under Genreal MIxing Conditions," Boston University - Department of Economics - Working Papers Series WP2005-046, Boston University - Department of Economics.
    5. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    6. Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.
    7. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    8. J. Cuñado & L. Gil-Alana & F. Gracia, 2009. "US stock market volatility persistence: evidence before and after the burst of the IT bubble," Review of Quantitative Finance and Accounting, Springer, vol. 33(3), pages 233-252, October.
    9. Vincent Dekker & Karsten Schweikert, 2021. "A Comparison of Different Data-driven Procedures to Determine the Bunching Window," Public Finance Review, , vol. 49(2), pages 262-293, March.
    10. Kar, Sabyasachi & Pritchett, Lant & Raihan, Selim & Sen, Kunal, 2013. "Looking for a break: Identifying transitions in growth regimes," Journal of Macroeconomics, Elsevier, vol. 38(PB), pages 151-166.
    11. Mariam Camarero & Juan Sapena & Cecilio Tamarit, 2020. "Modelling Time-Varying Parameters in Panel Data State-Space Frameworks: An Application to the Feldstein–Horioka Puzzle," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 87-114, June.
    12. Bernard, Jean-Thomas & Idoudi, Nadhem & Khalaf, Lynda & Yelou, Clement, 2007. "Finite sample multivariate structural change tests with application to energy demand models," Journal of Econometrics, Elsevier, vol. 141(2), pages 1219-1244, December.
    13. Anne Morrison Piehl & Suzanne J. Cooper & Anthony A. Braga & David M. Kennedy, 2003. "Testing for Structural Breaks in the Evaluation of Programs," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 550-558, August.
    14. Antonia López Villavicencio & Josep Lluís Raymond Bara, 2006. "The short and long-run determinants of the real exchange rate in Mexico," Working Papers wpdea0606, Department of Applied Economics at Universitat Autonoma of Barcelona.
    15. Garrod Brian & Almeida António & Machado Luiz, 2023. "Modelling of nonlinear asymmetric effects of changes in tourism on economic growth in an autonomous small-island economy," European Journal of Tourism, Hospitality and Recreation, Sciendo, vol. 13(2), pages 154-172, December.
    16. Gupta, Kuhika & Nowlin, Matthew C. & Ripberger, Joseph T. & Jenkins-Smith, Hank C. & Silva, Carol L., 2019. "Tracking the nuclear ‘mood’ in the United States: Introducing a long term measure of public opinion about nuclear energy using aggregate survey data," Energy Policy, Elsevier, vol. 133(C).
    17. Kevin S. Nell & Maria M. De Mello, 2019. "The interdependence between the saving rate and technology across regimes: evidence from South Africa," Empirical Economics, Springer, vol. 56(1), pages 269-300, January.
    18. Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
    19. Wagner, Martin & Wied, Dominik, 2014. "Monitoring Stationarity and Cointegration," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100386, Verein für Socialpolitik / German Economic Association.
    20. Parma Chakravartti & Sudipto Mundle, 2017. "An Automatic Leading Indicator Based Growth Forecast For 2016-17 and The Outlook Beyond," Working Papers id:11773, eSocialSciences.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0256128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.