IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v231y2015i1p105-12710.1007-s10479-013-1480-7.html
   My bibliography  Save this article

Mathematical programming models for joint simulation–optimization applied to closed queueing networks

Author

Listed:
  • Arianna Alfieri
  • Andrea Matta
  • Giulia Pedrielli

Abstract

The optimization of stochastic Discrete Event Systems (DESs) is a critical and difficult task. The search for the optimal system configuration (optimization problem) requires the assessment of the system performance (simulation problem), resulting in a simulation–optimization problem. In the past ten years, a noticeable research effort has been devoted to this area. Recently, mathematical programming has been proposed to integrate simulation and optimization for multi-stage open queueing networks. This paper proposes the application of this approach to closed queueing networks. In particular, the optimal pallet allocation problem is tackled through linear mathematical programming models for simulation–optimization. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Arianna Alfieri & Andrea Matta & Giulia Pedrielli, 2015. "Mathematical programming models for joint simulation–optimization applied to closed queueing networks," Annals of Operations Research, Springer, vol. 231(1), pages 105-127, August.
  • Handle: RePEc:spr:annopr:v:231:y:2015:i:1:p:105-127:10.1007/s10479-013-1480-7
    DOI: 10.1007/s10479-013-1480-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-013-1480-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-013-1480-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdellatif Bouhchouch & Yannick Frein & Yves Dallery, 1993. "Analysis of a closed‐loop manufacturing system with finite buffers," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 9(2), pages 111-125, June.
    2. L. Jeff Hong & Barry L. Nelson, 2006. "Discrete Optimization via Simulation Using COMPASS," Operations Research, INFORMS, vol. 54(1), pages 115-129, February.
    3. N. Maggio & A. Matta & S. Gershwin & T. Tolio, 2009. "A decomposition approximation for three-machine closed-loop production systems with unreliable machines, finite buffers and a fixed population," IISE Transactions, Taylor & Francis Journals, vol. 41(6), pages 562-574.
    4. Stephen M. Robinson, 1996. "Analysis of Sample-Path Optimization," Mathematics of Operations Research, INFORMS, vol. 21(3), pages 513-528, August.
    5. Justin Boesel & Barry L. Nelson & Seong-Hee Kim, 2003. "Using Ranking and Selection to “Clean Up” after Simulation Optimization," Operations Research, INFORMS, vol. 51(5), pages 814-825, October.
    6. Jack P.C. Kleijnen, 2015. "Design and Analysis of Simulation Experiments," International Series in Operations Research and Management Science, Springer, edition 2, number 978-3-319-18087-8, April.
    7. Alfieri, Arianna & Matta, Andrea, 2012. "Mathematical programming formulations for approximate simulation of multistage production systems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 773-783.
    8. Wai Kin (Victor) Chan & Lee Schruben, 2008. "Optimization Models of Discrete-Event System Dynamics," Operations Research, INFORMS, vol. 56(5), pages 1218-1237, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poorya Ghafoorpoor Yazdi & Aydin Azizi & Majid Hashemipour, 2019. "A Hybrid Methodology for Validation of Optimization Solutions Effects on Manufacturing Sustainability with Time Study and Simulation Approach for SMEs," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    2. Renato Matta & Timothy J. Lowe, 2023. "Product price alignment with seller service rating and consumer satisfaction," Annals of Operations Research, Springer, vol. 320(2), pages 695-725, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfieri, Arianna & Matta, Andrea, 2012. "Mathematical programming formulations for approximate simulation of multistage production systems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 773-783.
    2. Qi Fan & Jiaqiao Hu, 2018. "Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 677-693, November.
    3. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    4. Alfieri, Arianna & Matta, Andrea, 2013. "Mathematical programming time-based decomposition algorithm for discrete event simulation," European Journal of Operational Research, Elsevier, vol. 231(3), pages 557-566.
    5. Shyshou, Aliaksandr & Gribkovskaia, Irina & Barceló, Jaume, 2010. "A simulation study of the fleet sizing problem arising in offshore anchor handling operations," European Journal of Operational Research, Elsevier, vol. 203(1), pages 230-240, May.
    6. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    7. Kabirian, Alireza & Ólafsson, Sigurdur, 2011. "Continuous optimization via simulation using Golden Region search," European Journal of Operational Research, Elsevier, vol. 208(1), pages 19-27, January.
    8. Liujia Hu & Sigrún Andradóttir, 2019. "An Asymptotically Optimal Set Approach for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 21-39, February.
    9. Tsai, Shing Chih & Fu, Sheng Yang, 2014. "Genetic-algorithm-based simulation optimization considering a single stochastic constraint," European Journal of Operational Research, Elsevier, vol. 236(1), pages 113-125.
    10. Shing Chih Tsai, 2013. "Rapid Screening Procedures for Zero-One Optimization via Simulation," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 317-331, May.
    11. Miguel Lejeune & François Margot, 2011. "Optimization for simulation: LAD accelerator," Annals of Operations Research, Springer, vol. 188(1), pages 285-305, August.
    12. Yongchao Liu & Huifu Xu & Jane J. Ye, 2011. "Penalized Sample Average Approximation Methods for Stochastic Mathematical Programs with Complementarity Constraints," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 670-694, November.
    13. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    14. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    15. Vadim Lesnevski & Barry L. Nelson & Jeremy Staum, 2007. "Simulation of Coherent Risk Measures Based on Generalized Scenarios," Management Science, INFORMS, vol. 53(11), pages 1756-1769, November.
    16. Güzin Bayraksan & David P. Morton, 2011. "A Sequential Sampling Procedure for Stochastic Programming," Operations Research, INFORMS, vol. 59(4), pages 898-913, August.
    17. S. Göttlich & S. Kühn & J. A. Schwarz & R. Stolletz, 2016. "Approximations of time-dependent unreliable flow lines with finite buffers," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(3), pages 295-323, June.
    18. Jürgen Branke & Stephen E. Chick & Christian Schmidt, 2007. "Selecting a Selection Procedure," Management Science, INFORMS, vol. 53(12), pages 1916-1932, December.
    19. Jörg Fliege & Huifu Xu, 2011. "Stochastic Multiobjective Optimization: Sample Average Approximation and Applications," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 135-162, October.
    20. Dellino, Gabriella & Kleijnen, Jack P.C. & Meloni, Carlo, 2010. "Robust optimization in simulation: Taguchi and Response Surface Methodology," International Journal of Production Economics, Elsevier, vol. 125(1), pages 52-59, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:231:y:2015:i:1:p:105-127:10.1007/s10479-013-1480-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.