IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v231y2013i3p557-566.html
   My bibliography  Save this article

Mathematical programming time-based decomposition algorithm for discrete event simulation

Author

Listed:
  • Alfieri, Arianna
  • Matta, Andrea

Abstract

Mathematical programming has been proposed in the literature as an alternative technique to simulating a special class of Discrete Event Systems. There are several benefits to using mathematical programs for simulation, such as the possibility of performing sensitivity analysis and the ease of better integrating the simulation and optimisation. However, applications are limited by the usually long computational times. This paper proposes a time-based decomposition algorithm that splits the mathematical programming model into a number of submodels that can be solved sequentially to make the mathematical programming approach viable for long running simulations. The number of required submodels is the solution of an optimisation problem that minimises the expected time for solving all of the submodels. In this way, the solution time becomes a linear function of the number of simulated entities.

Suggested Citation

  • Alfieri, Arianna & Matta, Andrea, 2013. "Mathematical programming time-based decomposition algorithm for discrete event simulation," European Journal of Operational Research, Elsevier, vol. 231(3), pages 557-566.
  • Handle: RePEc:eee:ejores:v:231:y:2013:i:3:p:557-566
    DOI: 10.1016/j.ejor.2013.06.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713005419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.06.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfieri, Arianna & Matta, Andrea, 2012. "Mathematical programming formulations for approximate simulation of multistage production systems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 773-783.
    2. Wai Kin (Victor) Chan & Lee Schruben, 2008. "Optimization Models of Discrete-Event System Dynamics," Operations Research, INFORMS, vol. 56(5), pages 1218-1237, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Liberopoulos, 2020. "Comparison of optimal buffer allocation in flow lines under installation buffer, echelon buffer, and CONWIP policies," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 297-365, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arianna Alfieri & Andrea Matta & Giulia Pedrielli, 2015. "Mathematical programming models for joint simulation–optimization applied to closed queueing networks," Annals of Operations Research, Springer, vol. 231(1), pages 105-127, August.
    2. S. Göttlich & S. Kühn & J. A. Schwarz & R. Stolletz, 2016. "Approximations of time-dependent unreliable flow lines with finite buffers," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(3), pages 295-323, June.
    3. Alfieri, Arianna & Matta, Andrea, 2012. "Mathematical programming formulations for approximate simulation of multistage production systems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 773-783.
    4. George Liberopoulos, 2020. "Comparison of optimal buffer allocation in flow lines under installation buffer, echelon buffer, and CONWIP policies," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 297-365, June.
    5. Khayyati, Siamak & Tan, Barış, 2020. "Data-driven control of a production system by using marking-dependent threshold policy," International Journal of Production Economics, Elsevier, vol. 226(C).
    6. Alexander H. Gose & Brian T. Denton, 2016. "Sequential Bounding Methods for Two-Stage Stochastic Programs," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 351-369, May.
    7. Kolb, Oliver & Göttlich, Simone, 2015. "A continuous buffer allocation model using stochastic processes," European Journal of Operational Research, Elsevier, vol. 242(3), pages 865-874.
    8. Wai Kin Victor Chan, 2016. "Linear Programming Formulation of Idle Times for Single-Server Discrete-Event Simulation Models," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:231:y:2013:i:3:p:557-566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.