IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i4p4225-4239d48008.html
   My bibliography  Save this article

Estimating Energy Consumption of Transport Modes in China Using DEA

Author

Listed:
  • Weibin Lin

    (School of Economics and Resource Management, Beijing Normal University, Beijing 100875, China
    China Energy Research Society, Beijing 100045, China)

  • Bin Chen

    (School of Environment, Beijing Normal University, Beijing 100875, China
    China Energy Research Society, Beijing 100045, China)

  • Lina Xie

    (School of Economics and Resource Management, Beijing Normal University, Beijing 100875, China
    China Energy Research Society, Beijing 100045, China)

  • Haoran Pan

    (School of Economics and Resource Management, Beijing Normal University, Beijing 100875, China)

Abstract

The rapid growth of transport requirements in China will incur increasing transport energy demands and associated environmental pressures. In this paper, we employ a generalized data envelopment analysis (DEA) to evaluate the relative energy efficiency of rail, road, aviation and water transport from 1971 to 2011 by considering the energy input and passenger-kilometers (PKM) and freight ton-kilometers (TKM) outputs. The results show that the optimal energy efficiencies observed in 2011 are for rail and water transport, with the opposite observed for the energy efficiencies of aviation and road transport. In addition, we extend the DEA model to estimate future transport energy consumption in China. If each transport mode in 2020 is optimized throughout the observed period, the national transport energy consumption in 2020 will reach 497,701 kilotons coal equivalent (ktce), whereas the annual growth rate from 2011 to 2020 will be 5.7%. Assuming that efficiency improvements occur in this period, the estimated national transport energy consumption in 2020 will be 443,126 ktce, whereas the annual growth rate from 2011 to 2020 will be 4.4%, which is still higher than that of the national total energy consumption (3.8%).

Suggested Citation

  • Weibin Lin & Bin Chen & Lina Xie & Haoran Pan, 2015. "Estimating Energy Consumption of Transport Modes in China Using DEA," Sustainability, MDPI, vol. 7(4), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:4:p:4225-4239:d:48008
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/4/4225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/4/4225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R Ramanathan, 2005. "Estimating energy consumption of transport modes in India using DEA and application to energy and environmental policy," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 732-737, June.
    2. Zhang, Xing-Ping & Cheng, Xiao-Mei & Yuan, Jia-Hai & Gao, Xiao-Jun, 2011. "Total-factor energy efficiency in developing countries," Energy Policy, Elsevier, vol. 39(2), pages 644-650, February.
    3. Wang, Ke & Lu, Bin & Wei, Yi-Ming, 2013. "China’s regional energy and environmental efficiency: A Range-Adjusted Measure based analysis," Applied Energy, Elsevier, vol. 112(C), pages 1403-1415.
    4. Ramanathan, R., 2000. "A holistic approach to compare energy efficiencies of different transport modes," Energy Policy, Elsevier, vol. 28(11), pages 743-747, September.
    5. Blomberg, Jerry & Henriksson, Eva & Lundmark, Robert, 2012. "Energy efficiency and policy in Swedish pulp and paper mills: A data envelopment analysis approach," Energy Policy, Elsevier, vol. 42(C), pages 569-579.
    6. Song, Ma-Lin & Zhang, Lin-Ling & Liu, Wei & Fisher, Ron, 2013. "Bootstrap-DEA analysis of BRICS’ energy efficiency based on small sample data," Applied Energy, Elsevier, vol. 112(C), pages 1049-1055.
    7. Wang, Y.F. & Li, K.P. & Xu, X.M. & Zhang, Y.R., 2014. "Transport energy consumption and saving in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 641-655.
    8. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2013. "Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development," Energy Policy, Elsevier, vol. 58(C), pages 347-357.
    9. Blancard, Stéphane & Martin, Elsa, 2014. "Energy efficiency measurement in agriculture with imprecise energy content information," Energy Policy, Elsevier, vol. 66(C), pages 198-208.
    10. Zhang, Ming & Mu, Hailin & Li, Gang & Ning, Yadong, 2009. "Forecasting the transport energy demand based on PLSR method in China," Energy, Elsevier, vol. 34(9), pages 1396-1400.
    11. Vlontzos, George & Niavis, Spyros & Manos, Basil, 2014. "A DEA approach for estimating the agricultural energy and environmental efficiency of EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 91-96.
    12. Shi, Guang-Ming & Bi, Jun & Wang, Jin-Nan, 2010. "Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs," Energy Policy, Elsevier, vol. 38(10), pages 6172-6179, October.
    13. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    14. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    15. Fang, Chin-Yi & Hu, Jin-Li & Lou, Tze-Kai, 2013. "Environment-adjusted total-factor energy efficiency of Taiwan's service sectors," Energy Policy, Elsevier, vol. 63(C), pages 1160-1168.
    16. Weibin Lin & Jin Yang & Bin Chen, 2011. "Temporal and Spatial Analysis of Integrated Energy and Environment Efficiency in China Based on a Green GDP Index," Energies, MDPI, vol. 4(9), pages 1-15, September.
    17. Chang, Young-Tae & Zhang, Ning & Danao, Denise & Zhang, Nan, 2013. "Environmental efficiency analysis of transportation system in China: A non-radial DEA approach," Energy Policy, Elsevier, vol. 58(C), pages 277-283.
    18. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    19. C. Lovell & Shawna Grosskopf & Eduardo Ley & Jesús Pastor & Diego Prior & Philippe Eeckaut, 1994. "Linear programming approaches to the measurement and analysis of productive efficiency," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 2(2), pages 175-248, December.
    20. Goto, Mika & Otsuka, Akihiro & Sueyoshi, Toshiyuki, 2014. "DEA (Data Envelopment Analysis) assessment of operational and environmental efficiencies on Japanese regional industries," Energy, Elsevier, vol. 66(C), pages 535-549.
    21. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach," Energy, Elsevier, vol. 55(C), pages 676-682.
    22. Wang, Zhaohua & Feng, Chao & Zhang, Bin, 2014. "An empirical analysis of China's energy efficiency from both static and dynamic perspectives," Energy, Elsevier, vol. 74(C), pages 322-330.
    23. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    24. Hu, Jin-Li & Lio, Mon-Chi & Yeh, Fang-Yu & Lin, Cheng-Hsun, 2011. "Environment-adjusted regional energy efficiency in Taiwan," Applied Energy, Elsevier, vol. 88(8), pages 2893-2899, August.
    25. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    26. Mandal, Sabuj Kumar, 2010. "Do undesirable output and environmental regulation matter in energy efficiency analysis? Evidence from Indian Cement Industry," Energy Policy, Elsevier, vol. 38(10), pages 6076-6083, October.
    27. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    28. Honma, Satoshi & Hu, Jin-Li, 2008. "Total-factor energy efficiency of regions in Japan," Energy Policy, Elsevier, vol. 36(2), pages 821-833, February.
    29. Mukherjee, Kankana, 2010. "Measuring energy efficiency in the context of an emerging economy: The case of indian manufacturing," European Journal of Operational Research, Elsevier, vol. 201(3), pages 933-941, March.
    30. Mukherjee, Kankana, 2008. "Energy use efficiency in U.S. manufacturing: A nonparametric analysis," Energy Economics, Elsevier, vol. 30(1), pages 76-96, January.
    31. Bian, Yiwen & He, Ping & Xu, Hao, 2013. "Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach," Energy Policy, Elsevier, vol. 63(C), pages 962-971.
    32. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "DEA approach for unified efficiency measurement: Assessment of Japanese fossil fuel power generation," Energy Economics, Elsevier, vol. 33(2), pages 292-303, March.
    33. Yeh, Tsai-lien & Chen, Tser-yieth & Lai, Pei-ying, 2010. "A comparative study of energy utilization efficiency between Taiwan and China," Energy Policy, Elsevier, vol. 38(5), pages 2386-2394, May.
    34. Burley, Henry T, 1980. "Productive Efficiency in U.S. Manufacturing: A Linear Programming Approach," The Review of Economics and Statistics, MIT Press, vol. 62(4), pages 619-622, November.
    35. Voltes-Dorta, Augusto & Perdiguero, Jordi & Jiménez, Juan Luis, 2013. "Are car manufacturers on the way to reduce CO2 emissions?: A DEA approach," Energy Economics, Elsevier, vol. 38(C), pages 77-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Shaikh, Faheemullah & Ji, Qiang & Fan, Ying, 2016. "Prospects of Pakistan–China Energy and Economic Corridor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 253-263.
    3. Tomasz Rokicki & Grzegorz Koszela & Luiza Ochnio & Kamil Wojtczuk & Marcin Ratajczak & Hubert Szczepaniuk & Konrad Michalski & Piotr Bórawski & Aneta Bełdycka-Bórawska, 2021. "Diversity and Changes in Energy Consumption by Transport in EU Countries," Energies, MDPI, vol. 14(17), pages 1-21, August.
    4. Chia-Nan Wang & Hong-Xuyen Thi Ho & Shih-Hsiung Luo & Tsung-Fu Lin, 2017. "An Integrated Approach to Evaluating and Selecting Green Logistics Providers for Sustainable Development," Sustainability, MDPI, vol. 9(2), pages 1-21, February.
    5. Jiyoung Lee & Gyunghyun Choi, 2019. "A Dominance-Based Network Method for Ranking Efficient Decision-Making Units in Data Envelopment Analysis," Sustainability, MDPI, vol. 11(7), pages 1-20, April.
    6. Ming Meng & Yanan Fu & Tianyu Wang & Kaiqiang Jing, 2017. "Analysis of Low-Carbon Economy Efficiency of Chinese Industrial Sectors Based on a RAM Model with Undesirable Outputs," Sustainability, MDPI, vol. 9(3), pages 1-18, March.
    7. Quintano, Claudio & Mazzocchi, Paolo & Rocca, Antonella, 2021. "Evaluation of the eco-efficiency of territorial districts with seaport economic activities," Utilities Policy, Elsevier, vol. 71(C).
    8. Wenyue Yang & Shaojian Wang & Xiaoming Zhao, 2018. "Measuring the Direct and Indirect Effects of Neighborhood-Built Environments on Travel-related CO 2 Emissions: A Structural Equation Modeling Approach," Sustainability, MDPI, vol. 10(5), pages 1-14, April.
    9. Syed Ahtsham Ali & Jahanzaib Haider & Muhammad Ali & Syed Irfan Ali & Xu Ming, 2017. "Emerging Tourism between Pakistan and China: Tourism Opportunities via China-Pakistan Economic Corridor Abstract, Background: The China-Pakistan Economic Corridor (CPEC) is a mega-project worth more t," International Business Research, Canadian Center of Science and Education, vol. 10(8), pages 204-214, August.
    10. Shihong Zeng & Mimi Hu & Bin Su, 2016. "Research on Investment Efficiency and Policy Recommendations for the Culture Industry of China Based on a Three-Stage DEA," Sustainability, MDPI, vol. 8(4), pages 1-15, March.
    11. Feng, Xuesong & Tao, Zhibin & Shi, Ruolin, 2024. "The Spatiotemporal exploration of intercity transport energy efficiency in the mainland of China on the basis of improved stochastic frontier modelling," Renewable Energy, Elsevier, vol. 224(C).
    12. Fei Ma & Xiaodan Li & Qipeng Sun & Fei Liu & Wenlin Wang & Libiao Bai, 2018. "Regional Differences and Spatial Aggregation of Sustainable Transport Efficiency: A Case Study of China," Sustainability, MDPI, vol. 10(7), pages 1-23, July.
    13. Hualin Xie & Wei Wang, 2015. "Exploring the Spatial-Temporal Disparities of Urban Land Use Economic Efficiency in China and Its Influencing Factors under Environmental Constraints Based on a Sequential Slacks-Based Model," Sustainability, MDPI, vol. 7(8), pages 1-20, July.
    14. Hongchang Li & Jack Strauss & Lihong Liu, 2019. "A Panel Investigation of High-Speed Rail (HSR) and Urban Transport on China’s Carbon Footprint," Sustainability, MDPI, vol. 11(7), pages 1-24, April.
    15. Muhammad Awais & Tanzila Samin & Muhammad Awais Gulzar & Jinsoo Hwang, 2019. "The Sustainable Development of the China Pakistan Economic Corridor: Synergy among Economic, Social, and Environmental Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-11, December.
    16. Yongrok Choi & Haohao Wang & Fan Yang & Hyoungsuk Lee, 2021. "Sustainable Governance of the Korean Freight Transportation Industry from an Environmental Perspective," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
    17. Sajjakaj Jomnonkwao & Thanapong Champahom & Vatanavongs Ratanavaraha, 2020. "Methodologies for Determining the Service Quality of the Intercity Rail Service Based on Users’ Perceptions and Expectations in Thailand," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    18. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
    19. Boban Djordjević & Evelin Krmac, 2019. "Evaluation of Energy-Environment Efficiency of European Transport Sectors: Non-Radial DEA and TOPSIS Approach," Energies, MDPI, vol. 12(15), pages 1-27, July.
    20. Andrej David & Peter Mako & Jan Lizbetin & Patrik Bohm, 2021. "The Impact of an Environmental Way of Customer’s Thinking on a Range of Choice from Transport Routes in Maritime Transport," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    21. Yu, Yantuan & Huang, Jianhuan & Zhang, Ning, 2019. "Modeling the eco-efficiency of Chinese prefecture-level cities with regional heterogeneities: A comparative perspective," Ecological Modelling, Elsevier, vol. 402(C), pages 1-17.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    3. Bian, Yiwen & Hu, Miao & Wang, Yousen & Xu, Hao, 2016. "Energy efficiency analysis of the economic system in China during 1986–2012: A parallel slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 990-998.
    4. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    5. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
    6. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    7. Yu, Dejian & He, Xiaorong, 2020. "A bibliometric study for DEA applied to energy efficiency: Trends and future challenges," Applied Energy, Elsevier, vol. 268(C).
    8. Demiral, Elif E. & Sağlam, Ümit, 2021. "Eco-efficiency and Eco-productivity assessments of the states in the United States: A two-stage Non-parametric analysis," Applied Energy, Elsevier, vol. 303(C).
    9. Bhat, Javed Ahmad & Haider, Salman & Kamaiah, Bandi, 2018. "Interstate energy efficiency of Indian paper industry: A slack-based non-parametric approach," Energy, Elsevier, vol. 161(C), pages 284-298.
    10. Apergis, Nicholas & Aye, Goodness C. & Barros, Carlos Pestana & Gupta, Rangan & Wanke, Peter, 2015. "Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs," Energy Economics, Elsevier, vol. 51(C), pages 45-53.
    11. Georgia Makridou, Kostas Andriosopoulos, Michael Doumpos, and Constantin Zopounidis, 2015. "A Two-stage approach for energy efficiency analysis in European Union countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    12. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
    13. Iftikhar, Yaser & Wang, Zhaohua & Zhang, Bin & Wang, Bo, 2018. "Energy and CO2 emissions efficiency of major economies: A network DEA approach," Energy, Elsevier, vol. 147(C), pages 197-207.
    14. Makridou, Georgia & Andriosopoulos, Kostas & Doumpos, Michael & Zopounidis, Constantin, 2016. "Measuring the efficiency of energy-intensive industries across European countries," Energy Policy, Elsevier, vol. 88(C), pages 573-583.
    15. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    16. Kiril Simeonovski & Tamara Kaftandzieva & Gregory Brock, 2021. "Energy Efficiency Management across EU Countries: A DEA Approach," Energies, MDPI, vol. 14(9), pages 1-19, May.
    17. Shuangjie Li & Li Li & Liming Wang, 2020. "2030 Target for Energy Efficiency and Emission Reduction in the EU Paper Industry," Energies, MDPI, vol. 14(1), pages 1-17, December.
    18. Sueyoshi, Toshiyuki & Yuan, Yan, 2015. "China's regional sustainability and diversified resource allocation: DEA environmental assessment on economic development and air pollution," Energy Economics, Elsevier, vol. 49(C), pages 239-256.
    19. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    20. Chia-Jung Tu & Ming-Chung Chang & Chiang-Ping Chen, 2016. "Progressive Time-Weighted Dynamic Energy Efficiency, Energy Decoupling Rate, and Decarbonization: An Empirical Study on G7 and BRICS," Sustainability, MDPI, vol. 8(9), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:4:p:4225-4239:d:48008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.