IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v228y2015i1p65-8010.1007-s10479-012-1088-3.html
   My bibliography  Save this article

Environmental performance analysis of Chinese industry from a slacks-based perspective

Author

Listed:
  • Gongbing Bi
  • Yan Luo
  • Jingjing Ding
  • Liang Liang

Abstract

The industry activities produce massive bad by-products, in the form of waste water, waste gas or solid waste, which are the source of environmental issues. The growing concerns over environmental problems make China reconsider the current developing pattern, and partially necessitate the reformation of economic structure. If the environmental consequences from economic structure reformation are subject to empirical testing, it is of vital importance to make some actual measurement for environmental performance. To achieve this goal, this paper proposes a slacks-based environmental efficiency index based on data envelopment analysis (DEA). An empirical application to industry sector of China presents the following findings: (1) approximately two-thirds of the nation’s provinces are inefficient due to excessive resource utilization, insufficient products or considerable quantities of wastes; (2) Spearman test shows that SO 2 and solid waste intensity have more impacts on industrial aggregated efficiency than those of electricity and COD intensity do, which implies that waste gas and solid waste should be paid more attention in pollution abatement; (3) the environmental protection activities have yielded the expected benefits, as the aggregated efficiency of regional industry has been on a rising trend during the past decade; (4) the west region of China has been developing quickly in recently years and performs well both in economy and environmental control. Copyright Springer Science+Business Media, LLC 2015

Suggested Citation

  • Gongbing Bi & Yan Luo & Jingjing Ding & Liang Liang, 2015. "Environmental performance analysis of Chinese industry from a slacks-based perspective," Annals of Operations Research, Springer, vol. 228(1), pages 65-80, May.
  • Handle: RePEc:spr:annopr:v:228:y:2015:i:1:p:65-80:10.1007/s10479-012-1088-3
    DOI: 10.1007/s10479-012-1088-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1088-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1088-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mao, Weining & Koo, Won W., 1997. "Productivity growth, technological progress, and efficiency change in chinese agriculture after rural economic reforms: A DEA approach," China Economic Review, Elsevier, vol. 8(2), pages 157-174.
    2. Bian, Yiwen & Yang, Feng, 2010. "Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon's entropy," Energy Policy, Elsevier, vol. 38(4), pages 1909-1917, April.
    3. Yong Geng & Murray Haight & Qinghua Zhu, 2007. "Empirical analysis of eco-industrial development in China," Sustainable Development, John Wiley & Sons, Ltd., vol. 15(2), pages 121-133.
    4. Joseph Sarkis, 2006. "The adoption of environmental and risk management practices: Relationships to environmental performance," Annals of Operations Research, Springer, vol. 145(1), pages 367-381, July.
    5. Hua, Zhongsheng & Bian, Yiwen & Liang, Liang, 2007. "Eco-efficiency analysis of paper mills along the Huai River: An extended DEA approach," Omega, Elsevier, vol. 35(5), pages 578-587, October.
    6. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    7. Yang, Hongliang & Pollitt, Michael, 2009. "Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1095-1105, September.
    8. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    9. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    10. Zbigniew Nahorski & Hans Ravn, 2000. "A review of mathematical models in economic environmental problems," Annals of Operations Research, Springer, vol. 97(1), pages 165-201, December.
    11. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    12. Scheel, Holger, 2001. "Undesirable outputs in efficiency valuations," European Journal of Operational Research, Elsevier, vol. 132(2), pages 400-410, July.
    13. Byrnes, Patricia E. & Storbeck, James E., 2000. "Efficiency gains from regionalization: economic development in China revisited," Socio-Economic Planning Sciences, Elsevier, vol. 34(2), pages 141-154, June.
    14. Zaim, Osman, 2004. "Measuring environmental performance of state manufacturing through changes in pollution intensities: a DEA framework," Ecological Economics, Elsevier, vol. 48(1), pages 37-47, January.
    15. W. Liu & W. Meng & X. Li & D. Zhang, 2010. "DEA models with undesirable inputs and outputs," Annals of Operations Research, Springer, vol. 173(1), pages 177-194, January.
    16. M. Mimouni & S. Zekri & G. Flichman, 2000. "Modelling the trade‐offs between farm income and the reduction of erosion and nitrate pollution," Annals of Operations Research, Springer, vol. 94(1), pages 91-103, January.
    17. Watanabe, Michio & Tanaka, Katsuya, 2007. "Efficiency analysis of Chinese industry: A directional distance function approach," Energy Policy, Elsevier, vol. 35(12), pages 6323-6331, December.
    18. Korhonen, Pekka J. & Luptacik, Mikulas, 2004. "Eco-efficiency analysis of power plants: An extension of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 437-446, April.
    19. Zhang, Bing & Bi, Jun & Fan, Ziying & Yuan, Zengwei & Ge, Junjie, 2008. "Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach," Ecological Economics, Elsevier, vol. 68(1-2), pages 306-316, December.
    20. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    21. Daniel Tyteca, 1997. "Linear Programming Models for the Measurement of Environmental Performance of Firms—Concepts and Empirical Results," Journal of Productivity Analysis, Springer, vol. 8(2), pages 183-197, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    2. Noor Ramli & Susila Munisamy & Behrouz Arabi, 2013. "Scale directional distance function and its application to the measurement of eco-efficiency in the manufacturing sector," Annals of Operations Research, Springer, vol. 211(1), pages 381-398, December.
    3. Ke Wang & Shiwei Yu & Mo-Jie Li & Yi-Ming Wei, 2015. "Multi-directional efficiency analysis-based regional industrial environmental performance evaluation of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 273-299, February.
    4. Ye, Fei & Ouyang, You & Li, Yina, 2023. "Digital investment and environmental performance: The mediating roles of production efficiency and green innovation," International Journal of Production Economics, Elsevier, vol. 259(C).
    5. Xiaohong Liu & Qingyuan Zhu & Junfei Chu & Xiang Ji & Xingchen Li, 2019. "Environmental Performance and Benchmarking Information for Coal-Fired Power Plants in China: A DEA Approach," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1287-1302, December.
    6. Qiong Xia & Min Li & Huaqing Wu & Zhenggang Lu, 2016. "Does the Central Government’s Environmental Policy Work? Evidence from the Provincial-Level Environment Efficiency in China," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
    7. Ma-Lin Song & Ron Fisher & Jian-Lin Wang & Lian-Biao Cui, 2018. "Environmental performance evaluation with big data: theories and methods," Annals of Operations Research, Springer, vol. 270(1), pages 459-472, November.
    8. Linlin Zhao & Yong Zha & Kangning Wei & Liang Liang, 2017. "A target-based method for energy saving and carbon emissions reduction in China based on environmental data envelopment analysis," Annals of Operations Research, Springer, vol. 255(1), pages 277-300, August.
    9. Chiang Kao & Shiuh-Nan Hwang, 2019. "Efficiency evaluation in the presence of undesirable outputs: the most favorable shadow price approach," Annals of Operations Research, Springer, vol. 278(1), pages 5-16, July.
    10. Aiyshwariya Paulvannan Kanmani & Renee Obringer & Benjamin Rachunok & Roshanak Nateghi, 2020. "Assessing Global Environmental Sustainability Via an Unsupervised Clustering Framework," Sustainability, MDPI, vol. 12(2), pages 1-12, January.
    11. Honma, Satoshi & Ushifusa, Yoshiaki & Taghizadeh-Hesary, Farhad & Okamura, Soyoka & Vandercammee, Lilu, 2024. "Environmental efficiency of Japanese regions before and after the Great East Japan Earthquake," MPRA Paper 120945, University Library of Munich, Germany.
    12. Yiwen Bian & Kangjuan Lv & Anyu Yu, 2017. "China’s regional energy and carbon dioxide emissions efficiency evaluation with the presence of recovery energy: an interval slacks-based measure approach," Annals of Operations Research, Springer, vol. 255(1), pages 301-321, August.
    13. Wu, Jie & Li, Mingjun & Zhu, Qingyuan & Zhou, Zhixiang & Liang, Liang, 2019. "Energy and environmental efficiency measurement of China's industrial sectors: A DEA model with non-homogeneous inputs and outputs," Energy Economics, Elsevier, vol. 78(C), pages 468-480.
    14. Sebastián Lozano, 2017. "Technical and environmental efficiency of a two-stage production and abatement system," Annals of Operations Research, Springer, vol. 255(1), pages 199-219, August.
    15. Liu, Yaqin & Zhao, Guohao & Zhao, Yushan, 2016. "An analysis of Chinese provincial carbon dioxide emission efficiencies based on energy consumption structure," Energy Policy, Elsevier, vol. 96(C), pages 524-533.
    16. Kao, Chiang & Hwang, Shiuh-Nan, 2021. "Measuring the effects of undesirable outputs on the efficiency of production units," European Journal of Operational Research, Elsevier, vol. 292(3), pages 996-1003.
    17. Ziyuan Xie & Guixian Tian & Yongchao Tao, 2022. "A Multi-Criteria Decision-Making Framework for Sustainable Supplier Selection in the Circular Economy and Industry 4.0 Era," Sustainability, MDPI, vol. 14(24), pages 1-23, December.
    18. Linfang Tan & Da Gao & Xiaowei Liu, 2024. "Can Environmental Information Disclosure Improve Energy Efficiency in Manufacturing? Evidence from Chinese Enterprises," Energies, MDPI, vol. 17(10), pages 1-15, May.
    19. Wu, Jie & Lv, Lin & Sun, Jiasen & Ji, Xiang, 2015. "A comprehensive analysis of China's regional energy saving and emission reduction efficiency: From production and treatment perspectives," Energy Policy, Elsevier, vol. 84(C), pages 166-176.
    20. Barnabé Walheer, 2020. "Output, input, and undesirable output interconnections in data envelopment analysis: convexity and returns-to-scale," Annals of Operations Research, Springer, vol. 284(1), pages 447-467, January.
    21. Liu, Zhao & Zhang, Huan & Zhang, Yue-Jun & Zhu, Tian-Tian, 2020. "How does industrial policy affect the eco-efficiency of industrial sector? Evidence from China," Applied Energy, Elsevier, vol. 272(C).
    22. Qian Zhou, 2023. "Linking ecological infrastructure and tourism development through environmental governance: evidence from cities of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8395-8417, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    3. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    4. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    5. Pyoungsoo Lee & You-Jin Park, 2017. "Eco-Efficiency Evaluation Considering Environmental Stringency," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    6. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.
    7. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
    8. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali & Shadman, Foroogh, 2014. "Power industry restructuring and eco-efficiency changes: A new slacks-based model in Malmquist–Luenberger Index measurement," Energy Policy, Elsevier, vol. 68(C), pages 132-145.
    9. Adler, Nicole & Volta, Nicola, 2016. "Accounting for externalities and disposability: A directional economic environmental distance function," European Journal of Operational Research, Elsevier, vol. 250(1), pages 314-327.
    10. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    11. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    12. Pyoungsoo Lee, 2022. "Ranking Decision Making for Eco-Efficiency Using Operational, Energy, and Environmental Efficiency," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    13. Noor Ramli & Susila Munisamy & Behrouz Arabi, 2013. "Scale directional distance function and its application to the measurement of eco-efficiency in the manufacturing sector," Annals of Operations Research, Springer, vol. 211(1), pages 381-398, December.
    14. Halkos, George & Tzeremes, Nickolaos, 2011. "Regional environmental efficiency and economic growth: NUTS2 evidence from Germany, France and the UK," MPRA Paper 33698, University Library of Munich, Germany.
    15. Sahoo, Biresh K. & Luptacik, Mikulas & Mahlberg, Bernhard, 2011. "Alternative measures of environmental technology structure in DEA: An application," European Journal of Operational Research, Elsevier, vol. 215(3), pages 750-762, December.
    16. Afzalinejad, Mohammad, 2020. "Reverse efficiency measures for environmental assessment in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    17. César Salazar & Roberto Cárdenas-Retamal & Marcela Jaime, 2023. "Environmental efficiency in the salmon industry—an exploratory analysis around the 2007 ISA virus outbreak and subsequent regulations in Chile," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8107-8135, August.
    18. Jie Wu & Xiang Lu & Dong Guo & Liang Liang, 2017. "Slacks-Based Efficiency Measurements with Undesirable Outputs in Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1005-1021, July.
    19. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    20. Cordero Ferrera, Jose Manuel & Alonso Morán, Edurne & Nuño Solís, Roberto & Orueta, Juan F. & Souto Arce, Regina, 2013. "Efficiency assessment of primary care providers: A conditional nonparametric approach," MPRA Paper 51926, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:228:y:2015:i:1:p:65-80:10.1007/s10479-012-1088-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.