IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v218y2014i1p107-11410.1007-s10479-012-1234-y.html
   My bibliography  Save this article

Network flow models for intraday personnel scheduling problems

Author

Listed:
  • Peter Brucker
  • Rong Qu

Abstract

Personnel scheduling problems can be decomposed into two stages. In the first stage for each employee the working days have to be fixed. In the second stage for each day of the planning period an intraday scheduling problem has to be solved. It consists of the assignment of shifts to the employees who have to work on the day and for each working period of an employee a task assignment such that the demand of all tasks for personnel is covered. In Robinson et al. (Burke and Trick (Eds.), Proceedings of the 5th International Conference on the Practice and Theory of Automated Timetabling, 18th August–20th August 2004, Pittsburgh, PA, USA, pp. 561–566, 2005 ), the intraday problem has been formulated as a maximum flow problem. The assumptions are that, employees are qualified for all tasks, their shifts are given, and they are allowed to change tasks during the day. In this work, we extend the network flow model to cover the case where not all employees are qualified to perform all tasks. The model is further extended to be able to calculate shifts of employees for the given day, assuming that an earliest starting time, a latest finishing time, and a minimal working time are given. Labour cost can be also taken into account by solving a minimum cost network flow problem. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Peter Brucker & Rong Qu, 2014. "Network flow models for intraday personnel scheduling problems," Annals of Operations Research, Springer, vol. 218(1), pages 107-114, July.
  • Handle: RePEc:spr:annopr:v:218:y:2014:i:1:p:107-114:10.1007/s10479-012-1234-y
    DOI: 10.1007/s10479-012-1234-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1234-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1234-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Segal, 1974. "The Operator-Scheduling Problem: A Network-Flow Approach," Operations Research, INFORMS, vol. 22(4), pages 808-823, August.
    2. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    3. A.T. Ernst & H. Jiang & M. Krishnamoorthy & B. Owens & D. Sier, 2004. "An Annotated Bibliography of Personnel Scheduling and Rostering," Annals of Operations Research, Springer, vol. 127(1), pages 21-144, March.
    4. Brucker, Peter & Qu, Rong & Burke, Edmund, 2011. "Personnel scheduling: Models and complexity," European Journal of Operational Research, Elsevier, vol. 210(3), pages 467-473, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young-Chae Hong & Amy Cohn & Stephen Gorga & Edmond O’Brien & William Pozehl & Jennifer Zank, 2019. "Using Optimization Techniques and Multidisciplinary Collaboration to Solve a Challenging Real-World Residency Scheduling Problem," Interfaces, INFORMS, vol. 49(3), pages 201-212, May.
    2. Banu Sungur & Cemal Özgüven & Yasemin Kariper, 2017. "Shift scheduling with break windows, ideal break periods, and ideal waiting times," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 203-222, June.
    3. Lusby, Richard Martin & Range, Troels Martin & Larsen, Jesper, 2016. "A Benders decomposition-based matheuristic for the Cardinality Constrained Shift Design Problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 385-397.
    4. Brucker, Peter & Qu, Rong & Burke, Edmund, 2011. "Personnel scheduling: Models and complexity," European Journal of Operational Research, Elsevier, vol. 210(3), pages 467-473, May.
    5. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    6. Hans Corsten & Ferdinand Becker & Hagen Salewski, 2020. "Integrating truck and workforce scheduling in a cross-dock: analysis of different workforce coordination policies," Journal of Business Economics, Springer, vol. 90(2), pages 207-237, March.
    7. Ladier, Anne-Laure & Alpan, Gülgün & Penz, Bernard, 2014. "Joint employee weekly timetabling and daily rostering: A decision-support tool for a logistics platform," European Journal of Operational Research, Elsevier, vol. 234(1), pages 278-291.
    8. Jaime Miranda & Pablo A. Rey & Antoine Sauré & Richard Weber, 2018. "Metro Uses a Simulation-Optimization Approach to Improve Fare-Collection Shift Scheduling," Interfaces, INFORMS, vol. 48(6), pages 529-542, November.
    9. David Rea & Craig Froehle & Suzanne Masterson & Brian Stettler & Gregory Fermann & Arthur Pancioli, 2021. "Unequal but Fair: Incorporating Distributive Justice in Operational Allocation Models," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2304-2320, July.
    10. Saravanan Kesavan & Susan J. Lambert & Joan C. Williams & Pradeep K. Pendem, 2022. "Doing Well by Doing Good: Improving Retail Store Performance with Responsible Scheduling Practices at the Gap, Inc," Management Science, INFORMS, vol. 68(11), pages 7818-7836, November.
    11. Elina Rönnberg & Torbjörn Larsson, 2010. "Automating the self-scheduling process of nurses in Swedish healthcare: a pilot study," Health Care Management Science, Springer, vol. 13(1), pages 35-53, March.
    12. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    13. Lotfi Hidri & Achraf Gazdar & Mohammed M. Mabkhot, 2020. "Optimized Procedure to Schedule Physicians in an Intensive Care Unit: A Case Study," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    14. Broos Maenhout & Mario Vanhoucke, 2008. "Comparison and hybridization of crossover operators for the nurse scheduling problem," Annals of Operations Research, Springer, vol. 159(1), pages 333-353, March.
    15. Panta Lučić & Dušan Teodorović, 2007. "Metaheuristics approach to the aircrew rostering problem," Annals of Operations Research, Springer, vol. 155(1), pages 311-338, November.
    16. Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
    17. Zhang, Zizhen & Qin, Hu & Wang, Kai & He, Huang & Liu, Tian, 2017. "Manpower allocation and vehicle routing problem in non-emergency ambulance transfer service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 45-59.
    18. Paola Cappanera & Filippo Visintin & Roberta Rossi, 2022. "The emergency department physician rostering problem: obtaining equitable solutions via network optimization," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 916-959, December.
    19. Chapados, Nicolas & Joliveau, Marc & L’Ecuyer, Pierre & Rousseau, Louis-Martin, 2014. "Retail store scheduling for profit," European Journal of Operational Research, Elsevier, vol. 239(3), pages 609-624.
    20. Burke, Edmund K. & Curtois, Tim, 2014. "New approaches to nurse rostering benchmark instances," European Journal of Operational Research, Elsevier, vol. 237(1), pages 71-81.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:218:y:2014:i:1:p:107-114:10.1007/s10479-012-1234-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.