IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v206y2013i1p501-52510.1007-s10479-012-1274-3.html
   My bibliography  Save this article

A hybrid algorithm for linearly constrained minimax problems

Author

Listed:
  • Fusheng Wang

Abstract

Many real life problems can be stated as a minimax problem, such as economics, finance, management, engineering and other fields, which demonstrate the importance of having reliable methods to tackle minimax problems. In this paper, an algorithm for linearly constrained minimax problems is presented in which we combine the trust-region methods with the line-search methods and curve-search methods. By means of this hybrid technique, it avoids possibly solving the trust-region subproblems many times, and make better use of the advantages of different methods. Under weaker conditions, the global and superlinear convergence are achieved. Numerical experiments show that the new algorithm is robust and efficient. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Fusheng Wang, 2013. "A hybrid algorithm for linearly constrained minimax problems," Annals of Operations Research, Springer, vol. 206(1), pages 501-525, July.
  • Handle: RePEc:spr:annopr:v:206:y:2013:i:1:p:501-525:10.1007/s10479-012-1274-3
    DOI: 10.1007/s10479-012-1274-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1274-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1274-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y.H. Yu & L. Gao, 2002. "Nonmonotone Line Search Algorithm for Constrained Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 419-446, November.
    2. Tammy Drezner, 2009. "Location of retail facilities under conditions of uncertainty," Annals of Operations Research, Springer, vol. 167(1), pages 107-120, March.
    3. Fusheng Wang & Kecun Zhang, 2008. "A hybrid algorithm for nonlinear minimax problems," Annals of Operations Research, Springer, vol. 164(1), pages 167-191, November.
    4. C. Michelot & F. Plastria, 2002. "An Extended Multifacility Minimax Location Problem Revisited," Annals of Operations Research, Springer, vol. 111(1), pages 167-179, March.
    5. K.L. Teo & X.Q. Yang, 2001. "Portfolio Selection Problem with Minimax Type Risk Function," Annals of Operations Research, Springer, vol. 101(1), pages 333-349, January.
    6. Oded Berman & Jiamin Wang & Zvi Drezner & George Wesolowsky, 2003. "A Probabilistic Minimax Location Problem on the Plane," Annals of Operations Research, Springer, vol. 122(1), pages 59-70, September.
    7. Rustem, Berc & Becker, Robin G. & Marty, Wolfgang, 2000. "Robust min-max portfolio strategies for rival forecast and risk scenarios," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1591-1621, October.
    8. Igor Averbakh & Oded Berman, 2002. "Minmax p-Traveling Salesmen Location Problems on a Tree," Annals of Operations Research, Springer, vol. 110(1), pages 55-68, February.
    9. Wenyu Sun & Ya-xiang Yuan, 2001. "A Conic Trust-Region Method for Nonlinearly Constrained Optimization," Annals of Operations Research, Springer, vol. 103(1), pages 175-191, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin-bao Jian & Qing-juan Hu & Chun-ming Tang, 2014. "Superlinearly Convergent Norm-Relaxed SQP Method Based on Active Set Identification and New Line Search for Constrained Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 859-883, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khaki, Audil & Prasad, Mason & Al-Mohamad, Somar & Bakry, Walid & Vo, Xuan Vinh, 2023. "Re-evaluating portfolio diversification and design using cryptocurrencies: Are decentralized cryptocurrencies enough?," Research in International Business and Finance, Elsevier, vol. 64(C).
    2. Costa, Oswaldo L.V. & de Oliveira Ribeiro, Celma & Rego, Erik Eduardo & Stern, Julio Michael & Parente, Virginia & Kileber, Solange, 2017. "Robust portfolio optimization for electricity planning: An application based on the Brazilian electricity mix," Energy Economics, Elsevier, vol. 64(C), pages 158-169.
    3. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    4. Mark Horner & Michael Widener, 2011. "The effects of transportation network failure on people’s accessibility to hurricane disaster relief goods: a modeling approach and application to a Florida case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1619-1634, December.
    5. Bhuvnesh Sharma & M. Ramkumar & Nachiappan Subramanian & Bharat Malhotra, 2019. "Dynamic temporary blood facility location-allocation during and post-disaster periods," Annals of Operations Research, Springer, vol. 283(1), pages 705-736, December.
    6. Ping Hu & Xu-Qing Liu, 2013. "A Nonmonotone Line Search Slackness Technique for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 773-786, September.
    7. He, Guang & Huang, Nan-jing, 2014. "A new particle swarm optimization algorithm with an application," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 521-528.
    8. Ahmadi-Javid, Amir & Amiri, Elahe & Meskar, Mahla, 2018. "A Profit-Maximization Location-Routing-Pricing Problem: A Branch-and-Price Algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 866-881.
    9. Jin-bao Jian & Xing-de Mo & Li-juan Qiu & Su-ming Yang & Fu-sheng Wang, 2014. "Simple Sequential Quadratically Constrained Quadratic Programming Feasible Algorithm with Active Identification Sets for Constrained Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(1), pages 158-188, January.
    10. Zvi Drezner & Dawit Zerom, 2023. "Competitive facility location under attrition," Computational Management Science, Springer, vol. 20(1), pages 1-19, December.
    11. Gulpinar, Nalan & Rustem, Berc, 2007. "Worst-case robust decisions for multi-period mean-variance portfolio optimization," European Journal of Operational Research, Elsevier, vol. 183(3), pages 981-1000, December.
    12. X Cai & K L Teo & X Q Yang & X Y Zhou, 2004. "Minimax portfolio optimization: empirical numerical study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 65-72, January.
    13. Kai Ye & Panos Parpas & Berç Rustem, 2012. "Robust portfolio optimization: a conic programming approach," Computational Optimization and Applications, Springer, vol. 52(2), pages 463-481, June.
    14. Schotman, Peter C & Lutgens, Frank, 2007. "Robust Portfolio Optimisation with Multiple Experts," CEPR Discussion Papers 6161, C.E.P.R. Discussion Papers.
    15. Kena Zhao & Tsan Sheng Adam Ng & Xiao Liu, 2020. "A guarantee rate optimization model for wastewater treatment system design under uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 420-437, September.
    16. Ioana Popescu, 2007. "Robust Mean-Covariance Solutions for Stochastic Optimization," Operations Research, INFORMS, vol. 55(1), pages 98-112, February.
    17. Costa, O. L. V. & Paiva, A. C., 2002. "Robust portfolio selection using linear-matrix inequalities," Journal of Economic Dynamics and Control, Elsevier, vol. 26(6), pages 889-909, June.
    18. V. Jeyakumar & Guoyin Li, 2011. "Regularized Lagrangian duality for linearly constrained quadratic optimization and trust-region problems," Journal of Global Optimization, Springer, vol. 49(1), pages 1-14, January.
    19. Shuanglin Li & Kok Lay Teo, 2019. "Post-disaster multi-period road network repair: work scheduling and relief logistics optimization," Annals of Operations Research, Springer, vol. 283(1), pages 1345-1385, December.
    20. Lutgens, F. & Sturm, J.F., 2002. "Robust One Period Option Modelling," Discussion Paper 2002-114, Tilburg University, Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:206:y:2013:i:1:p:501-525:10.1007/s10479-012-1274-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.