IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v232y2014icp521-528.html
   My bibliography  Save this article

A new particle swarm optimization algorithm with an application

Author

Listed:
  • He, Guang
  • Huang, Nan-jing

Abstract

In this paper, for dealing with the portfolio model from stocks market, a new particle swarm optimization algorithm (NPSO) is presented, in which the optimal and sub-optimal positions of each particle are considered in the iteration process, and the crossover operation is used to avoid premature. It is demonstrated from optimization tests that NPSO outperforms existed PSO. Then NPSO is used to solve a discontinuous programming model, and four different optimal portfolio selections are displayed which are denoted by S1,S2,S3 and S4, respectively. Finally, actual return rates of these portfolios are obtained, and it is analyzed from related graphs that S2 and S3 gain better results.

Suggested Citation

  • He, Guang & Huang, Nan-jing, 2014. "A new particle swarm optimization algorithm with an application," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 521-528.
  • Handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:521-528
    DOI: 10.1016/j.amc.2014.01.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314000654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.01.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    2. Xiaoqiang Cai & Kok-Lay Teo & Xiaoqi Yang & Xun Yu Zhou, 2000. "Portfolio Optimization Under a Minimax Rule," Management Science, INFORMS, vol. 46(7), pages 957-972, July.
    3. K.L. Teo & X.Q. Yang, 2001. "Portfolio Selection Problem with Minimax Type Risk Function," Annals of Operations Research, Springer, vol. 101(1), pages 333-349, January.
    4. X Cai & K L Teo & X Q Yang & X Y Zhou, 2004. "Minimax portfolio optimization: empirical numerical study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 65-72, January.
    5. Martin R. Young, 1998. "A Minimax Portfolio Selection Rule with Linear Programming Solution," Management Science, INFORMS, vol. 44(5), pages 673-683, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doering, Jana & Kizys, Renatas & Juan, Angel A. & Fitó, Àngels & Polat, Onur, 2019. "Metaheuristics for rich portfolio optimisation and risk management: Current state and future trends," Operations Research Perspectives, Elsevier, vol. 6(C).
    2. Quan, Hao & Wang, Wenyu & Zhang, Shaojia & Zou, Yun, 2024. "Probabilistic assessment method of small-signal stability in power systems based on quantitative PSS analysis," Applied Energy, Elsevier, vol. 375(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polak, George G. & Rogers, David F. & Sweeney, Dennis J., 2010. "Risk management strategies via minimax portfolio optimization," European Journal of Operational Research, Elsevier, vol. 207(1), pages 409-419, November.
    2. X Cai & K L Teo & X Q Yang & X Y Zhou, 2004. "Minimax portfolio optimization: empirical numerical study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 65-72, January.
    3. Esther Mohr & Robert Dochow, 2017. "Risk management strategies for finding universal portfolios," Annals of Operations Research, Springer, vol. 256(1), pages 129-147, September.
    4. Ya Ping Fang & Kaiwen Meng & Xiao Qi Yang, 2012. "Piecewise Linear Multicriteria Programs: The Continuous Case and Its Discontinuous Generalization," Operations Research, INFORMS, vol. 60(2), pages 398-409, April.
    5. Deng, Xiao-Tie & Li, Zhong-Fei & Wang, Shou-Yang, 2005. "A minimax portfolio selection strategy with equilibrium," European Journal of Operational Research, Elsevier, vol. 166(1), pages 278-292, October.
    6. Shrey Jain & Siddhartha P. Chakrabarty, 2020. "Does Marginal VaR Lead to Improved Performance of Managed Portfolios: A Study of S&P BSE 100 and S&P BSE 200," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(2), pages 291-323, June.
    7. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    8. Massimiliano Caporin & Grégory M. Jannin & Francesco Lisi & Bertrand B. Maillet, 2014. "A Survey On The Four Families Of Performance Measures," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 917-942, December.
    9. Huang, Xiaoxia, 2007. "Two new models for portfolio selection with stochastic returns taking fuzzy information," European Journal of Operational Research, Elsevier, vol. 180(1), pages 396-405, July.
    10. Sabastine Mushori & Delson Chikobvu, 2016. "A Stochastic Multi-stage Trading Cost model in optimal portfolio selection," EERI Research Paper Series EERI RP 2016/23, Economics and Econometrics Research Institute (EERI), Brussels.
    11. Mainik, Georg & Mitov, Georgi & Rüschendorf, Ludger, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 115-134.
    12. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    13. Abha Naik & Esra Yeniaras & Gerhard Hellstern & Grishma Prasad & Sanjay Kumar Lalta Prasad Vishwakarma, 2023. "From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance," Papers 2307.01155, arXiv.org.
    14. Georg Mainik & Georgi Mitov & Ludger Ruschendorf, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Papers 1505.04045, arXiv.org.
    15. Jyotirmayee Behera & Pankaj Kumar, 2024. "Implementation of machine learning in $$\ell _{\infty }$$ ℓ ∞ -based sparse Sharpe ratio portfolio optimization: a case study on Indian stock market," Operational Research, Springer, vol. 24(4), pages 1-26, December.
    16. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    17. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    18. Fang, Yong & Chen, Lihua & Fukushima, Masao, 2008. "A mixed R&D projects and securities portfolio selection model," European Journal of Operational Research, Elsevier, vol. 185(2), pages 700-715, March.
    19. Alessandra Carleo & Francesco Cesarone & Andrea Gheno & Jacopo Maria Ricci, 2017. "Approximating exact expected utility via portfolio efficient frontiers," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 115-143, November.
    20. Marco Corazza & Giovanni Fasano & Riccardo Gusso, 2011. "Particle Swarm Optimization with non-smooth penalty reformulation for a complex portfolio selection problem," Working Papers 2011_10, Department of Economics, University of Venice "Ca' Foscari".

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:521-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.