IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v205y2013i1p141-16810.1007-s10479-012-1247-6.html
   My bibliography  Save this article

What do robust equity portfolio models really do?

Author

Listed:
  • Woo Kim
  • Jang Kim
  • So Ahn
  • Frank Fabozzi

Abstract

Most of previous work on robust equity portfolio optimization has focused on its formulation and performance. In contrast, in this paper we analyze the behavior of robust equity portfolios to determine whether reducing the sensitivity to input estimation errors is all robust models do and investigate any side-effects of robust formulations. Therefore, our focus is on the relationship between fundamental factors and robust models in order to determine if robust equity portfolios are consistently investing more in the factors opposed to individual asset movements. To do so, we perform regressions with factor returns to explain how robust portfolios behave compared to portfolios generated from the Markowitz’s mean-variance model. We find that robust equity portfolios consistently show higher correlation with the three fundamental factors used in the Fama-French factor model. Furthermore, more robustness among robust portfolios results in a higher correlation with the Fama-French three factors. In fact, we show that as equity portfolios under no constraints on portfolio weights become more robust, they consistently depend more on the market and large factors. These results show that robust models are betting on the fundamental factors instead of individual asset movements. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Woo Kim & Jang Kim & So Ahn & Frank Fabozzi, 2013. "What do robust equity portfolio models really do?," Annals of Operations Research, Springer, vol. 205(1), pages 141-168, May.
  • Handle: RePEc:spr:annopr:v:205:y:2013:i:1:p:141-168:10.1007/s10479-012-1247-6
    DOI: 10.1007/s10479-012-1247-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1247-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1247-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William N. Goetzmann & Alok Kumar, 2008. "Equity Portfolio Diversification," Review of Finance, European Finance Association, vol. 12(3), pages 433-463.
    2. Blume, Marshall E & Friend, Irwin, 1975. "The Asset Structure of Individual Portfolios and Some Implications for Utility Functions," Journal of Finance, American Finance Association, vol. 30(2), pages 585-603, May.
    3. R.H. Tütüncü & M. Koenig, 2004. "Robust Asset Allocation," Annals of Operations Research, Springer, vol. 132(1), pages 157-187, November.
    4. André Alves Portela Santos, 2010. "The Out-of-Sample Performance of Robust Portfolio Optimization," Brazilian Review of Finance, Brazilian Society of Finance, vol. 8(2), pages 141-166.
    5. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    6. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    7. Fama, Eugene F. & French, Kenneth R., 1997. "Industry costs of equity," Journal of Financial Economics, Elsevier, vol. 43(2), pages 153-193, February.
    8. Fama, Eugene F & French, Kenneth R, 1995. "Size and Book-to-Market Factors in Earnings and Returns," Journal of Finance, American Finance Association, vol. 50(1), pages 131-155, March.
    9. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    10. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    11. Woo Chang Kim & John Mulvey, 2009. "Evaluating style investment—Does a fund market defined along equity styles add value?," Quantitative Finance, Taylor & Francis Journals, vol. 9(6), pages 637-651.
    12. Bernd Scherer, 2007. "Can robust portfolio optimisation help to build better portfolios?," Journal of Asset Management, Palgrave Macmillan, vol. 7(6), pages 374-387, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonios Georgantas & Michalis Doumpos & Constantin Zopounidis, 2024. "Robust optimization approaches for portfolio selection: a comparative analysis," Annals of Operations Research, Springer, vol. 339(3), pages 1205-1221, August.
    2. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2018. "Recent advancements in robust optimization for investment management," Annals of Operations Research, Springer, vol. 266(1), pages 183-198, July.
    3. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    4. Xidonas, Panos & Hassapis, Christis & Soulis, John & Samitas, Aristeidis, 2017. "Robust minimum variance portfolio optimization modelling under scenario uncertainty," Economic Modelling, Elsevier, vol. 64(C), pages 60-71.
    5. A. Georgantas, 2020. "Robust Optimization Approaches for Portfolio Selection: A Computational and Comparative Analysis," Papers 2010.13397, arXiv.org.
    6. Kim, Woo Chang & Kim, Jang Ho & Mulvey, John M. & Fabozzi, Frank J., 2015. "Focusing on the worst state for robust investing," International Review of Financial Analysis, Elsevier, vol. 39(C), pages 19-31.
    7. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    8. Sandra Caçador & Joana Matos Dias & Pedro Godinho, 2020. "Global minimum variance portfolios under uncertainty: a robust optimization approach," Journal of Global Optimization, Springer, vol. 76(2), pages 267-293, February.
    9. David Ardia & Guido Bolliger & Kris Boudt & Jean-Philippe Gagnon-Fleury, 2017. "The impact of covariance misspecification in risk-based portfolios," Annals of Operations Research, Springer, vol. 254(1), pages 1-16, July.
    10. Xidonas, Panos & Mavrotas, George & Hassapis, Christis & Zopounidis, Constantin, 2017. "Robust multiobjective portfolio optimization: A minimax regret approach," European Journal of Operational Research, Elsevier, vol. 262(1), pages 299-305.
    11. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    12. Kim, Woo Chang & Kim, Jang Ho & Fabozzi, Frank J., 2014. "Deciphering robust portfolios," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 1-8.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Woo Chang & Kim, Jang Ho & Fabozzi, Frank J., 2014. "Deciphering robust portfolios," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 1-8.
    2. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    3. Kim, Woo Chang & Kim, Min Jeong & Kim, Jang Ho & Fabozzi, Frank J., 2014. "Robust portfolios that do not tilt factor exposure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 411-421.
    4. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    5. Kim, Jang Ho & Kim, Woo Chang & Fabozzi, Frank J., 2013. "Composition of robust equity portfolios," Finance Research Letters, Elsevier, vol. 10(2), pages 72-81.
    6. Vaughn Gambeta & Roy Kwon, 2020. "Risk Return Trade-Off in Relaxed Risk Parity Portfolio Optimization," JRFM, MDPI, vol. 13(10), pages 1-28, October.
    7. Jang Ho Kim & Woo Chang Kim & Do-Gyun Kwon & Frank J. Fabozzi, 2018. "Robust equity portfolio performance," Annals of Operations Research, Springer, vol. 266(1), pages 293-312, July.
    8. Antonios Georgantas & Michalis Doumpos & Constantin Zopounidis, 2024. "Robust optimization approaches for portfolio selection: a comparative analysis," Annals of Operations Research, Springer, vol. 339(3), pages 1205-1221, August.
    9. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    10. Kellerer, Belinda, 2019. "Portfolio Optimization and Ambiguity Aversion," Junior Management Science (JUMS), Junior Management Science e. V., vol. 4(3), pages 305-338.
    11. Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    12. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    13. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    14. Shashank Oberoi & Mohammed Bilal Girach & Siddhartha P. Chakrabarty, 2020. "Can Robust Optimization Offer Improved Portfolio Performance? An Empirical Study of Indian market," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(3), pages 611-630, September.
    15. Giorgio Costa & Roy Kwon, 2020. "A robust framework for risk parity portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 447-466, September.
    16. Erindi Allaj, 2020. "The Black–Litterman model and views from a reverse optimization procedure: an out-of-sample performance evaluation," Computational Management Science, Springer, vol. 17(3), pages 465-492, October.
    17. Zhilin Kang & Zhongfei Li, 2018. "An exact solution to a robust portfolio choice problem with multiple risk measures under ambiguous distribution," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(2), pages 169-195, April.
    18. Giorgio Costa & Roy H. Kwon, 2020. "Generalized risk parity portfolio optimization: an ADMM approach," Journal of Global Optimization, Springer, vol. 78(1), pages 207-238, September.
    19. A. Georgantas, 2020. "Robust Optimization Approaches for Portfolio Selection: A Computational and Comparative Analysis," Papers 2010.13397, arXiv.org.
    20. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2018. "Recent advancements in robust optimization for investment management," Annals of Operations Research, Springer, vol. 266(1), pages 183-198, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:205:y:2013:i:1:p:141-168:10.1007/s10479-012-1247-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.