IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v203y2013i1p33-5410.1007-s10479-011-0871-x.html
   My bibliography  Save this article

Optimal allocation of stock levels and stochastic customer demands to a capacitated resource

Author

Listed:
  • Shuang Chen
  • Joseph Geunes

Abstract

This paper considers a new class of stochastic resource allocation problems that requires simultaneously determining the customers that a capacitated resource must serve and the stock levels of multiple items that may be used in meeting these customers’ demands. Our model considers a reward (revenue) for serving each assigned customer, a variable cost for allocating each item to the resource, and a shortage cost for each unit of unsatisfied customer demand in a single-period context. The model maximizes the expected profit resulting from the assignment of customers and items to the resource while obeying the resource capacity constraint. We provide an exact solution method for this mixed integer nonlinear optimization problem using a Generalized Benders Decomposition approach. This decomposition approach uses Lagrangian relaxation to solve a constrained multi-item newsvendor subproblem and uses CPLEX to solve a mixed-integer linear master problem. We generate Benders cuts for the master problem by obtaining a series of subgradients of the subproblem’s convex objective function. In addition, we present a family of heuristic solution approaches and compare our methods with several MINLP (Mixed-Integer Nonlinear Programming) commercial solvers in order to benchmark their efficiency and quality. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Shuang Chen & Joseph Geunes, 2013. "Optimal allocation of stock levels and stochastic customer demands to a capacitated resource," Annals of Operations Research, Springer, vol. 203(1), pages 33-54, March.
  • Handle: RePEc:spr:annopr:v:203:y:2013:i:1:p:33-54:10.1007/s10479-011-0871-x
    DOI: 10.1007/s10479-011-0871-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-011-0871-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-011-0871-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Teunter, Ruud H. & Klein Haneveld, Willem K., 2002. "Inventory control of service parts in the final phase," European Journal of Operational Research, Elsevier, vol. 137(3), pages 497-511, March.
    2. Saif Benjaafar & Mohsen ElHafsi & Francis de Véricourt, 2004. "Demand Allocation in Multiple-Product, Multiple-Facility, Make-to-Stock Systems," Management Science, INFORMS, vol. 50(10), pages 1431-1448, October.
    3. Stephen A. Smith & John C. Chambers & Eli Shlifer, 1980. "Note---Optimal Inventories Based on Job Completion Rate for Repairs Requiring Multiple Items," Management Science, INFORMS, vol. 26(8), pages 849-854, August.
    4. Joseph Geunes & Zuo‐Jun Shen & H. Edwin Romeijn, 2004. "Economic ordering decisions with market choice flexibility," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(1), pages 117-136, February.
    5. Zuo-Jun Max Shen & Collette Coullard & Mark S. Daskin, 2003. "A Joint Location-Inventory Model," Transportation Science, INFORMS, vol. 37(1), pages 40-55, February.
    6. Taaffe, Kevin & Geunes, Joseph & Romeijn, H. Edwin, 2008. "Target market selection and marketing effort under uncertainty: The selective newsvendor," European Journal of Operational Research, Elsevier, vol. 189(3), pages 987-1003, September.
    7. Awi Federgruen & Gregory Prastacos & Paul H. Zipkin, 1986. "An Allocation and Distribution Model for Perishable Products," Operations Research, INFORMS, vol. 34(1), pages 75-82, February.
    8. Teunter, Ruud H. & Klein Haneveld, Willem K., 2002. "Inventory control of service parts in the final phase: A central depot and repair kits," European Journal of Operational Research, Elsevier, vol. 138(1), pages 76-86, April.
    9. Yalçın Akçay & Haijun Li & Susan Xu, 2007. "Greedy algorithm for the general multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 150(1), pages 17-29, March.
    10. Vasquez, Michel & Vimont, Yannick, 2005. "Improved results on the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 165(1), pages 70-81, August.
    11. Michael F. Gorman & Sanjay Ahire, 2006. "A Major Appliance Manufacturer Rethinks Its Inventory Policies for Service Vehicles," Interfaces, INFORMS, vol. 36(5), pages 407-419, October.
    12. Anton J. Kleywegt & Jason D. Papastavrou, 2001. "The Dynamic and Stochastic Knapsack Problem with Random Sized Items," Operations Research, INFORMS, vol. 49(1), pages 26-41, February.
    13. Stefanie Kosuch & Abdel Lisser, 2010. "Upper bounds for the 0-1 stochastic knapsack problem and a B&B algorithm," Annals of Operations Research, Springer, vol. 176(1), pages 77-93, April.
    14. Awi Federgruen & Paul Zipkin, 1984. "A Combined Vehicle Routing and Inventory Allocation Problem," Operations Research, INFORMS, vol. 32(5), pages 1019-1037, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shib Sana, 2015. "An EOQ model for stochastic demand for limited capacity of own warehouse," Annals of Operations Research, Springer, vol. 233(1), pages 383-399, October.
    2. Andrzej Karbowski, 2021. "Generalized Benders Decomposition Method to Solve Big Mixed-Integer Nonlinear Optimization Problems with Convex Objective and Constraints Functions," Energies, MDPI, vol. 14(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teunter, Ruud H., 2006. "The multiple-job repair kit problem," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1103-1116, December.
    2. Bertazzi, Luca & Bosco, Adamo & Laganà, Demetrio, 2015. "Managing stochastic demand in an Inventory Routing Problem with transportation procurement," Omega, Elsevier, vol. 56(C), pages 112-121.
    3. J. B. G. Frenk & Sonya Javadi & Semih O. Sezer, 2019. "An optimal stopping approach for the end-of-life inventory problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(3), pages 329-363, December.
    4. Luca Bertazzi & Maria Grazia Speranza & Walter Ukovich, 2000. "Exact and Heuristic Solutions for a Shipment Problem with Given Frequencies," Management Science, INFORMS, vol. 46(7), pages 973-988, July.
    5. Mohd Kamarul Irwan Abdul Rahim & El-Houssaine Aghezzaf & Veronique Limère & Birger Raa, 2016. "Analysing the effectiveness of vendor-managed inventory in a single-warehouse, multiple-retailer system," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(8), pages 1953-1965, June.
    6. Alvarez, Aldair & Cordeau, Jean-François & Jans, Raf & Munari, Pedro & Morabito, Reinaldo, 2021. "Inventory routing under stochastic supply and demand," Omega, Elsevier, vol. 102(C).
    7. Yong Liang & Mengshi Lu & Zuo‐Jun Max Shen & Runyu Tang, 2021. "Data Center Network Design for Internet‐Related Services and Cloud Computing," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2077-2101, July.
    8. Christiane B. Haubitz & Ulrich W. Thonemann, 2021. "How to Change a Running System—Controlling the Transition to Optimized Spare Parts Inventory Policies," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1386-1405, May.
    9. Shi, Zhenyang & Liu, Shaoxuan, 2020. "Optimal inventory control and design refresh selection in managing part obsolescence," European Journal of Operational Research, Elsevier, vol. 287(1), pages 133-144.
    10. Shu, Jia & Li, Zhengyi & Shen, Houcai & Wu, Ting & Zhong, Weijun, 2012. "A logistics network design model with vendor managed inventory," International Journal of Production Economics, Elsevier, vol. 135(2), pages 754-761.
    11. Wei Huang & H. Edwin Romeijn & Joseph Geunes, 2005. "The continuous‐time single‐sourcing problem with capacity expansion opportunities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(3), pages 193-211, April.
    12. Ali Diabat & Tarek Abdallah & Tung Le, 2016. "A hybrid tabu search based heuristic for the periodic distribution inventory problem with perishable goods," Annals of Operations Research, Springer, vol. 242(2), pages 373-398, July.
    13. Behfard, S. & van der Heijden, M.C. & Al Hanbali, A. & Zijm, W.H.M., 2015. "Last time buy and repair decisions for spare parts," European Journal of Operational Research, Elsevier, vol. 244(2), pages 498-510.
    14. Onur Kaya & Dogus Ozkok, 2020. "A Blood Bank Network Design Problem with Integrated Facility Location, Inventory and Routing Decisions," Networks and Spatial Economics, Springer, vol. 20(3), pages 757-783, September.
    15. Jafarian, Ahmad & Asgari, Nasrin & Mohri, Seyed Sina & Fatemi-Sadr, Elham & Farahani, Reza Zanjirani, 2019. "The inventory-routing problem subject to vehicle failure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 254-294.
    16. Jia Shu & Chung-Piaw Teo & Zuo-Jun Max Shen, 2005. "Stochastic Transportation-Inventory Network Design Problem," Operations Research, INFORMS, vol. 53(1), pages 48-60, February.
    17. Strinka, Zohar M.A. & Romeijn, H. Edwin & Wu, Jingchen, 2013. "Exact and heuristic methods for a class of selective newsvendor problems with normally distributed demands," Omega, Elsevier, vol. 41(2), pages 250-258.
    18. Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
    19. Pinçe, Çerag & Dekker, Rommert, 2011. "An inventory model for slow moving items subject to obsolescence," European Journal of Operational Research, Elsevier, vol. 213(1), pages 83-95, August.
    20. Frenk, J.B.G. & Javadi, S. & Pourakbar, M. & Sezer, S.O., 2019. "An exact static solution approach for the service parts end-of-life inventory problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 496-504.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:203:y:2013:i:1:p:33-54:10.1007/s10479-011-0871-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.