IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v200y2012i1p247-26310.1007-s10479-011-1027-8.html
   My bibliography  Save this article

Dynamic consistency for stochastic optimal control problems

Author

Listed:
  • Pierre Carpentier
  • Jean-Philippe Chancelier
  • Guy Cohen
  • Michel Lara
  • Pierre Girardeau

Abstract

For a sequence of dynamic optimization problems, we aim at discussing a notion of consistency over time. This notion can be informally introduced as follows. At the very first time step t 0 , the decision maker formulates an optimization problem that yields optimal decision rules for all the forthcoming time steps t 0 ,t 1 ,…,T; at the next time step t 1 , he is able to formulate a new optimization problem starting at time t 1 that yields a new sequence of optimal decision rules. This process can be continued until the final time T is reached. A family of optimization problems formulated in this way is said to be dynamically consistent if the optimal strategies obtained when solving the original problem remain optimal for all subsequent problems. The notion of dynamic consistency, well-known in the field of economics, has been recently introduced in the context of risk measures, notably by Artzner et al. (Ann. Oper. Res. 152(1):5–22, 2007 ) and studied in the stochastic programming framework by Shapiro (Oper. Res. Lett. 37(3):143–147, 2009 ) and for Markov Decision Processes (MDP) by Ruszczynski (Math. Program. 125(2):235–261, 2010 ). We here link this notion with the concept of “state variable” in MDP, and show that a significant class of dynamic optimization problems are dynamically consistent, provided that an adequate state variable is chosen. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Pierre Carpentier & Jean-Philippe Chancelier & Guy Cohen & Michel Lara & Pierre Girardeau, 2012. "Dynamic consistency for stochastic optimal control problems," Annals of Operations Research, Springer, vol. 200(1), pages 247-263, November.
  • Handle: RePEc:spr:annopr:v:200:y:2012:i:1:p:247-263:10.1007/s10479-011-1027-8
    DOI: 10.1007/s10479-011-1027-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-011-1027-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-011-1027-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    2. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    3. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath & Hyejin Ku, 2007. "Coherent multiperiod risk adjusted values and Bellman’s principle," Annals of Operations Research, Springer, vol. 152(1), pages 5-22, July.
    4. R. Henrion, 2002. "On the Connectedness of Probabilistic Constraint Sets," Journal of Optimization Theory and Applications, Springer, vol. 112(3), pages 657-663, March.
    5. Peter J. Hammond, 1976. "Changing Tastes and Coherent Dynamic Choice," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 43(1), pages 159-173.
    6. Kreps, David M & Porteus, Evan L, 1978. "Temporal Resolution of Uncertainty and Dynamic Choice Theory," Econometrica, Econometric Society, vol. 46(1), pages 185-200, January.
    7. Detlefsen, Kai & Scandolo, Giacomo, 2005. "Conditional and dynamic convex risk measures," SFB 649 Discussion Papers 2005-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. R. H. Strotz, 1955. "Myopia and Inconsistency in Dynamic Utility Maximization," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 23(3), pages 165-180.
    9. Bezalel Peleg & Menahem E. Yaari, 1973. "On the Existence of a Consistent Course of Action when Tastes are Changing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 40(3), pages 391-401.
    10. Stuart Dreyfus, 2002. "Richard Bellman on the Birth of Dynamic Programming," Operations Research, INFORMS, vol. 50(1), pages 48-51, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pflug, Georg Ch. & Pichler, Alois, 2016. "Time-inconsistent multistage stochastic programs: Martingale bounds," European Journal of Operational Research, Elsevier, vol. 249(1), pages 155-163.
    2. Homem-de-Mello, Tito & Pagnoncelli, Bernardo K., 2016. "Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective," European Journal of Operational Research, Elsevier, vol. 249(1), pages 188-199.
    3. Alois Pichler & Michael Weinhardt, 2022. "The nested Sinkhorn divergence to learn the nested distance," Computational Management Science, Springer, vol. 19(2), pages 269-293, June.
    4. De Lara, Michel & Leclère, Vincent, 2016. "Building up time-consistency for risk measures and dynamic optimization," European Journal of Operational Research, Elsevier, vol. 249(1), pages 177-187.
    5. Xin, Linwei & Goldberg, David A., 2021. "Time (in)consistency of multistage distributionally robust inventory models with moment constraints," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1127-1141.
    6. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2016. "A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective," Papers 1603.09030, arXiv.org, revised Jan 2017.
    7. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Guignard, Monique & Weintraub, Andres, 2018. "Risk management for forestry planning under uncertainty in demand and prices," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1051-1074.
    8. Andre Luiz Diniz & Maria Elvira P. Maceira & Cesar Luis V. Vasconcellos & Debora Dias J. Penna, 2020. "A combined SDDP/Benders decomposition approach with a risk-averse surface concept for reservoir operation in long term power generation planning," Annals of Operations Research, Springer, vol. 292(2), pages 649-681, September.
    9. Georg Ch. Pflug & Alois Pichler, 2016. "Time-Consistent Decisions and Temporal Decomposition of Coherent Risk Functionals," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 682-699, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henri Gérard & Michel Lara & Jean-Philippe Chancelier, 2020. "Equivalence between time consistency and nested formula," Annals of Operations Research, Springer, vol. 292(2), pages 627-647, September.
    2. De Lara, Michel & Leclère, Vincent, 2016. "Building up time-consistency for risk measures and dynamic optimization," European Journal of Operational Research, Elsevier, vol. 249(1), pages 177-187.
    3. Henri G'erard & Michel de Lara & Jean-Philippe Chancelier, 2017. "Equivalence Between Time Consistency and Nested Formula," Papers 1711.08633, arXiv.org, revised May 2019.
    4. Samuel N. Cohen & Tanut Treetanthiploet, 2019. "Gittins' theorem under uncertainty," Papers 1907.05689, arXiv.org, revised Jun 2021.
    5. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    6. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    7. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    8. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.
    9. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2015, January-A.
    10. Zachary Feinstein & Birgit Rudloff, 2018. "Time consistency for scalar multivariate risk measures," Papers 1810.04978, arXiv.org, revised Nov 2021.
    11. Engsner, Hampus & Lindskog, Filip & Thøgersen, Julie, 2023. "Multiple-prior valuation of cash flows subject to capital requirements," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 41-56.
    12. Zhiping Chen & Jia Liu & Gang Li & Zhe Yan, 2016. "Composite time-consistent multi-period risk measure and its application in optimal portfolio selection," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 515-540, October.
    13. Daniel Bartl, 2016. "Conditional nonlinear expectations," Papers 1612.09103, arXiv.org, revised Mar 2019.
    14. Dejian Tian & Xunlian Wang, 2023. "Dynamic star-shaped risk measures and $g$-expectations," Papers 2305.02481, arXiv.org.
    15. Bäuerle, Nicole & Glauner, Alexander, 2022. "Markov decision processes with recursive risk measures," European Journal of Operational Research, Elsevier, vol. 296(3), pages 953-966.
    16. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    17. Chen, Zhiping & Li, Gang & Zhao, Yonggan, 2014. "Time-consistent investment policies in Markovian markets: A case of mean–variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 293-316.
    18. Zachary Feinstein & Birgit Rudloff, 2012. "Multiportfolio time consistency for set-valued convex and coherent risk measures," Papers 1212.5563, arXiv.org, revised Oct 2014.
    19. Chen, Zhi-ping & Li, Gang & Guo, Ju-e, 2013. "Optimal investment policy in the time consistent mean–variance formulation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 145-156.
    20. Hampus Engsner & Filip Lindskog & Julie Thoegersen, 2021. "Multiple-prior valuation of cash flows subject to capital requirements," Papers 2109.00306, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:200:y:2012:i:1:p:247-263:10.1007/s10479-011-1027-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.