IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v189y2011i1p205-21410.1007-s10479-009-0589-1.html
   My bibliography  Save this article

Cooperative Cross-Entropy method for generating entangled networks

Author

Listed:
  • Kin-Ping Hui

Abstract

Survivability is rapidly becoming an important criterion in network design and planning. This is due to our increased dependence on ever more complex communication networks. Another important criterion which plays a central role in design and planning decisions is cost. As a result, network planners tend to design sparse networks to minimise cost. There is a class of networks known as entangled networks which seems to satisfy both criteria of survivability and sparseness. In this paper, we demonstrate how the Cross-Entropy method may be utilised to generate entangled networks. We also propose a cooperative optimisation approach to further improve the generation of an optimal entangled network. Copyright Her Majesty the Queen in Right of Australia 2011

Suggested Citation

  • Kin-Ping Hui, 2011. "Cooperative Cross-Entropy method for generating entangled networks," Annals of Operations Research, Springer, vol. 189(1), pages 205-214, September.
  • Handle: RePEc:spr:annopr:v:189:y:2011:i:1:p:205-214:10.1007/s10479-009-0589-1
    DOI: 10.1007/s10479-009-0589-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-009-0589-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-009-0589-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rubinstein, Reuven Y., 1997. "Optimization of computer simulation models with rare events," European Journal of Operational Research, Elsevier, vol. 99(1), pages 89-112, May.
    2. Pieter-Tjerk de Boer & Dirk Kroese & Shie Mannor & Reuven Rubinstein, 2005. "A Tutorial on the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 19-67, February.
    3. K.-P. Hui & N. Bean & M. Kraetzl & Dirk Kroese, 2005. "The Cross-Entropy Method for Network Reliability Estimation," Annals of Operations Research, Springer, vol. 134(1), pages 101-118, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Su & Qun Niu & Zhile Yang, 2023. "Optimal Power Flow Using Improved Cross-Entropy Method," Energies, MDPI, vol. 16(14), pages 1-33, July.
    2. Ali Kadhem, Athraa & Abdul Wahab, Noor Izzri & Aris, Ishak & Jasni, Jasronita & Abdalla, Ahmed N., 2017. "Computational techniques for assessing the reliability and sustainability of electrical power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1175-1186.
    3. Heath, Jeffrey W. & Fu, Michael C. & Jank, Wolfgang, 2009. "New global optimization algorithms for model-based clustering," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3999-4017, October.
    4. Erik Hintz & Marius Hofert & Christiane Lemieux & Yoshihiro Taniguchi, 2022. "Single-Index Importance Sampling with Stratification," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3049-3073, December.
    5. Joshua C. C. Chan & Eric Eisenstat, 2015. "Marginal Likelihood Estimation with the Cross-Entropy Method," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 256-285, March.
    6. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    7. Mathieu Balesdent & Jérôme Morio & Loïc Brevault, 2016. "Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 197-216, March.
    8. Caballero, Rafael & Hernández-Díaz, Alfredo G. & Laguna, Manuel & Molina, Julián, 2015. "Cross entropy for multiobjective combinatorial optimization problems with linear relaxations," European Journal of Operational Research, Elsevier, vol. 243(2), pages 362-368.
    9. M. Bayat & F. Hooshmand & S. A. MirHassani, 2024. "Scenario-based stochastic model and efficient cross-entropy algorithm for the risk-budgeting problem," Annals of Operations Research, Springer, vol. 341(2), pages 731-755, October.
    10. A. Shibu & M. Reddy, 2014. "Optimal Design of Water Distribution Networks Considering Fuzzy Randomness of Demands Using Cross Entropy Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4075-4094, September.
    11. Nguyen, Hoa T.M. & Chow, Andy H.F. & Ying, Cheng-shuo, 2021. "Pareto routing and scheduling of dynamic urban rail transit services with multi-objective cross entropy method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    12. Sahar Abbas & Fahimeh Moosavi, 2012. "Finding shortest path in static networks: using a modified algorithm," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 1(1), pages 29-34, January.
    13. Papaioannou, Iason & Geyer, Sebastian & Straub, Daniel, 2019. "Improved cross entropy-based importance sampling with a flexible mixture model," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    14. Ferdinand Bollwein & Stephan Westphal, 2022. "Oblique decision tree induction by cross-entropy optimization based on the von Mises–Fisher distribution," Computational Statistics, Springer, vol. 37(5), pages 2203-2229, November.
    15. Dirk P. Kroese & Sergey Porotsky & Reuven Y. Rubinstein, 2006. "The Cross-Entropy Method for Continuous Multi-Extremal Optimization," Methodology and Computing in Applied Probability, Springer, vol. 8(3), pages 383-407, September.
    16. Jiaqiao Hu & Michael C. Fu & Steven I. Marcus, 2007. "A Model Reference Adaptive Search Method for Global Optimization," Operations Research, INFORMS, vol. 55(3), pages 549-568, June.
    17. Xi Chen & Enlu Zhou, 2015. "Population model-based optimization," Journal of Global Optimization, Springer, vol. 63(1), pages 125-148, September.
    18. K.-P. Hui & N. Bean & M. Kraetzl & Dirk Kroese, 2005. "The Cross-Entropy Method for Network Reliability Estimation," Annals of Operations Research, Springer, vol. 134(1), pages 101-118, February.
    19. Lvyang Qiu & Shuyu Li & Yunsick Sung, 2021. "3D-DCDAE: Unsupervised Music Latent Representations Learning Method Based on a Deep 3D Convolutional Denoising Autoencoder for Music Genre Classification," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    20. Akimoto, Youhei & Auger, Anne & Hansen, Nikolaus, 2022. "An ODE method to prove the geometric convergence of adaptive stochastic algorithms," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 269-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:189:y:2011:i:1:p:205-214:10.1007/s10479-009-0589-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.