IDEAS home Printed from https://ideas.repec.org/a/rbs/ijfbss/v1y2012i1p29-34.html
   My bibliography  Save this article

Finding shortest path in static networks: using a modified algorithm

Author

Listed:
  • Sahar Abbas

    (Department of Industrial Engineering, NajafabadBranch, Islamic Azad University, Esfahan, Iran)

  • Fahimeh Moosavi

    (Department of Industrial Engineering, NajafabadBranch, Islamic Azad University, Esfahan, Iran)

Abstract

This paper considers the problem of finding the shortest path in a static network, where the costs are constant. The CE Algorithm based strategy that is presented by Rubinstein to solving rare eventand combinatorial optimization problem is modified to finding shortest path in this research. To analyze the efficiency of the used algorithm three sets of small, medium and large sized problems that generated randomly are solved. The results on the set of problems show that the modified algorithm produces good solutions and time saving in computation of large-scale network.

Suggested Citation

  • Sahar Abbas & Fahimeh Moosavi, 2012. "Finding shortest path in static networks: using a modified algorithm," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 1(1), pages 29-34, January.
  • Handle: RePEc:rbs:ijfbss:v:1:y:2012:i:1:p:29-34
    as

    Download full text from publisher

    File URL: https://www.ssbfnet.com/ojs/index.php/ijfbs/article/view/446/408
    Download Restriction: no

    File URL: https://www.ssbfnet.com/ojs/index.php/ijfbs/article/view/446
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joshua C. C. Chan & Eric Eisenstat, 2015. "Marginal Likelihood Estimation with the Cross-Entropy Method," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 256-285, March.
    2. Davies, Cedric & Lingras, Pawan, 2003. "Genetic algorithms for rerouting shortest paths in dynamic and stochastic networks," European Journal of Operational Research, Elsevier, vol. 144(1), pages 27-38, January.
    3. Chan, Joshua C.C. & Kroese, Dirk P., 2010. "Efficient estimation of large portfolio loss probabilities in t-copula models," European Journal of Operational Research, Elsevier, vol. 205(2), pages 361-367, September.
    4. Pieter-Tjerk de Boer & Dirk Kroese & Shie Mannor & Reuven Rubinstein, 2005. "A Tutorial on the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 19-67, February.
    5. K.-P. Hui & N. Bean & M. Kraetzl & Dirk Kroese, 2005. "The Cross-Entropy Method for Network Reliability Estimation," Annals of Operations Research, Springer, vol. 134(1), pages 101-118, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Kadhem, Athraa & Abdul Wahab, Noor Izzri & Aris, Ishak & Jasni, Jasronita & Abdalla, Ahmed N., 2017. "Computational techniques for assessing the reliability and sustainability of electrical power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1175-1186.
    2. Erik Hintz & Marius Hofert & Christiane Lemieux & Yoshihiro Taniguchi, 2022. "Single-Index Importance Sampling with Stratification," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3049-3073, December.
    3. Joshua C. C. Chan & Eric Eisenstat, 2015. "Marginal Likelihood Estimation with the Cross-Entropy Method," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 256-285, March.
    4. Chan, Jianpeng & Papaioannou, Iason & Straub, Daniel, 2024. "Bayesian improved cross entropy method with categorical mixture models for network reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    5. Kin-Ping Hui, 2011. "Cooperative Cross-Entropy method for generating entangled networks," Annals of Operations Research, Springer, vol. 189(1), pages 205-214, September.
    6. Huang, Zhenzhen & Kwok, Yue Kuen & Xu, Ziqing, 2024. "Efficient algorithms for calculating risk measures and risk contributions in copula credit risk models," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 132-150.
    7. Hao Su & Qun Niu & Zhile Yang, 2023. "Optimal Power Flow Using Improved Cross-Entropy Method," Energies, MDPI, vol. 16(14), pages 1-33, July.
    8. İsmail Başoğlu & Wolfgang Hörmann & Halis Sak, 2018. "Efficient simulations for a Bernoulli mixture model of portfolio credit risk," Annals of Operations Research, Springer, vol. 260(1), pages 113-128, January.
    9. Dante A. Urbina & Gabriel Rodríguez, 2023. "Evolution of the effects of mineral commodity prices on fiscal fluctuations: empirical evidence from TVP-VAR-SV models for Peru," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 159(1), pages 153-184, February.
    10. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
    11. Xi Chen & Enlu Zhou, 2015. "Population model-based optimization," Journal of Global Optimization, Springer, vol. 63(1), pages 125-148, September.
    12. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    13. Lvyang Qiu & Shuyu Li & Yunsick Sung, 2021. "3D-DCDAE: Unsupervised Music Latent Representations Learning Method Based on a Deep 3D Convolutional Denoising Autoencoder for Music Genre Classification," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    14. Akimoto, Youhei & Auger, Anne & Hansen, Nikolaus, 2022. "An ODE method to prove the geometric convergence of adaptive stochastic algorithms," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 269-307.
    15. Anastasia Spiliopoulou & Ioannis Papamichail & Markos Papageorgiou & Yannis Tyrinopoulos & John Chrysoulakis, 2017. "Macroscopic traffic flow model calibration using different optimization algorithms," Operational Research, Springer, vol. 17(1), pages 145-164, April.
    16. Gupta, Rangan & Ji, Qiang & Pierdzioch, Christian & Plakandaras, Vasilios, 2023. "Forecasting the conditional distribution of realized volatility of oil price returns: The role of skewness over 1859 to 2023," Finance Research Letters, Elsevier, vol. 58(PC).
    17. Deng, Xiangtian & Zhang, Yi & Jiang, Yi & Zhang, Yi & Qi, He, 2024. "A novel operation method for renewable building by combining distributed DC energy system and deep reinforcement learning," Applied Energy, Elsevier, vol. 353(PB).
    18. Zhang, Yali & Shang, Pengjian, 2019. "Multivariate multiscale distribution entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 72-80.
    19. Cross, Jamie & Nguyen, Bao H., 2017. "The relationship between global oil price shocks and China's output: A time-varying analysis," Energy Economics, Elsevier, vol. 62(C), pages 79-91.
    20. A. Gouda & T. Szántai, 2008. "Rare event probabilities in stochastic networks," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(4), pages 441-461, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rbs:ijfbss:v:1:y:2012:i:1:p:29-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hasan Dincer (email available below). General contact details of provider: https://edirc.repec.org/data/ssbffea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.