IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v186y2011i1p83-9910.1007-s10479-009-0602-8.html
   My bibliography  Save this article

Testing successive regression approximations by large-scale two-stage problems

Author

Listed:
  • István Deák

Abstract

A heuristic procedure, called successive regression approximations (SRA) has been developed for solving stochastic programming problems. They range from equation solving to probabilistic constrained and two-stage models through a combined model of Prékopa. We show here, that due to enhancements in the computer program, SRA can be used to solve large-scale two-stage problems with 100 first stage decision variables and a 120 dimensional normally distributed random right hand side vector in the second stage problem. A FORTRAN source program and computational results for 124 problems are presented at www.uni-corvinus.hu/~ideak1 . Copyright Springer Science+Business Media, LLC 2011

Suggested Citation

  • István Deák, 2011. "Testing successive regression approximations by large-scale two-stage problems," Annals of Operations Research, Springer, vol. 186(1), pages 83-99, June.
  • Handle: RePEc:spr:annopr:v:186:y:2011:i:1:p:83-99:10.1007/s10479-009-0602-8
    DOI: 10.1007/s10479-009-0602-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-009-0602-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-009-0602-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John M. Mulvey & Andrzej Ruszczyński, 1995. "A New Scenario Decomposition Method for Large-Scale Stochastic Optimization," Operations Research, INFORMS, vol. 43(3), pages 477-490, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helga Meier & Nicos Christofides & Gerry Salkin, 2001. "Capital Budgeting Under Uncertainty---An Integrated Approach Using Contingent Claims Analysis and Integer Programming," Operations Research, INFORMS, vol. 49(2), pages 196-206, April.
    2. Michael Freimer & Jeffrey Linderoth & Douglas Thomas, 2012. "The impact of sampling methods on bias and variance in stochastic linear programs," Computational Optimization and Applications, Springer, vol. 51(1), pages 51-75, January.
    3. Hashem Omrani & Farzane Adabi & Narges Adabi, 2017. "Designing an efficient supply chain network with uncertain data: a robust optimization—data envelopment analysis approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 816-828, July.
    4. R. Baldacci & M. Boschetti & N. Christofides & S. Christofides, 2009. "Exact methods for large-scale multi-period financial planning problems," Computational Management Science, Springer, vol. 6(3), pages 281-306, August.
    5. V.I. Norkin & G.C. Pflug & A. Ruszczynski, 1996. "A Branch and Bound Method for Stochastic Global Optimization," Working Papers wp96065, International Institute for Applied Systems Analysis.
    6. Cooper, W. W. & Hemphill, H. & Huang, Z. & Li, S. & Lelas, V. & Sullivan, D. W., 1997. "Survey of mathematical programming models in air pollution management," European Journal of Operational Research, Elsevier, vol. 96(1), pages 1-35, January.
    7. Maher, Stephen J., 2021. "Implementing the branch-and-cut approach for a general purpose Benders’ decomposition framework," European Journal of Operational Research, Elsevier, vol. 290(2), pages 479-498.
    8. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    9. Jesús Latorre & Santiago Cerisola & Andrés Ramos & Rafael Palacios, 2009. "Analysis of stochastic problem decomposition algorithms in computational grids," Annals of Operations Research, Springer, vol. 166(1), pages 355-373, February.
    10. Shangyao Yan & Chia-Hung Chen & Chung-Kai Chen, 2008. "Short-term shift setting and manpower supplying under stochastic demands for air cargo terminals," Transportation, Springer, vol. 35(3), pages 425-444, May.
    11. Marco Colombo & Andreas Grothey, 2013. "A decomposition-based crash-start for stochastic programming," Computational Optimization and Applications, Springer, vol. 55(2), pages 311-340, June.
    12. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    13. Julia Higle & Suvrajeet Sen, 2006. "Multistage stochastic convex programs: Duality and its implications," Annals of Operations Research, Springer, vol. 142(1), pages 129-146, February.
    14. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
    15. Og[caron]uzsoy, Cemal Berk & Güven, Sibel, 2007. "Robust portfolio planning in the presence of market anomalies," Omega, Elsevier, vol. 35(1), pages 1-6, February.
    16. Vahdani, Behnam & Mohammadi, M., 2015. "A bi-objective interval-stochastic robust optimization model for designing closed loop supply chain network with multi-priority queuing system," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 67-87.
    17. Yan, Shangyao & Lin, Jenn-Rong & Lai, Chun-Wei, 2013. "The planning and real-time adjustment of courier routing and scheduling under stochastic travel times and demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 34-48.
    18. Tang, Yikuan & Zhang, Fan & Wang, Sufen & Zhang, Xiaodong & Guo, Shanshan & Guo, Ping, 2019. "A distributed interval nonlinear multiobjective programming approach for optimal irrigation water management in an arid area," Agricultural Water Management, Elsevier, vol. 220(C), pages 13-26.
    19. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    20. Yan, Shangyao & Chi, Chin-Jen & Tang, Ching-Hui, 2006. "Inter-city bus routing and timetable setting under stochastic demands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 572-586, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:186:y:2011:i:1:p:83-99:10.1007/s10479-009-0602-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.