IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v184y2011i1p233-27110.1007-s10479-010-0798-7.html
   My bibliography  Save this article

An anytime multistep anticipatory algorithm for online stochastic combinatorial optimization

Author

Listed:
  • Luc Mercier
  • Pascal Hentenryck

Abstract

The one-step anticipatory algorithms (1s-AA) is an online algorithm making decisions under uncertainty by ignoring the non-anticipativity constraints in the future. It was shown to make near-optimal decisions on a variety of online stochastic combinatorial problems in dynamic fleet management and reservation systems. Here we consider applications in which 1s-AA is not as close to the optimum and propose Amsaa, an anytime multi-step anticipatory algorithm. Amsaa combines techniques from three different fields to make decisions online. It uses the sampling average approximation method from stochastic programming, search algorithms for Markov decision processes from artificial intelligence, and discrete optimization algorithms. Amsaa was evaluated on a stochastic project scheduling application from the pharmaceutical industry featuring endogenous observations of the uncertainty. The experimental results show that Amsaa significantly outperforms state-of-the-art algorithms on this application under various time constraints. Copyright Springer Science+Business Media, LLC 2011

Suggested Citation

  • Luc Mercier & Pascal Hentenryck, 2011. "An anytime multistep anticipatory algorithm for online stochastic combinatorial optimization," Annals of Operations Research, Springer, vol. 184(1), pages 233-271, April.
  • Handle: RePEc:spr:annopr:v:184:y:2011:i:1:p:233-271:10.1007/s10479-010-0798-7
    DOI: 10.1007/s10479-010-0798-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-010-0798-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-010-0798-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Russell W. Bent & Pascal Van Hentenryck, 2004. "Scenario-Based Planning for Partially Dynamic Vehicle Routing with Stochastic Customers," Operations Research, INFORMS, vol. 52(6), pages 977-987, December.
    2. Jitka Dupačová & Giorgio Consigli & Stein Wallace, 2000. "Scenarios for Multistage Stochastic Programs," Annals of Operations Research, Springer, vol. 100(1), pages 25-53, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Wu & Bo Zeng & Siming Huang, 2019. "A Dynamic Strategy for Home Pick-Up Service with Uncertain Customer Requests and Its Implementation," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    2. Maier, Sebastian & Pflug, Georg C. & Polak, John W., 2020. "Valuing portfolios of interdependent real options under exogenous and endogenous uncertainties," European Journal of Operational Research, Elsevier, vol. 285(1), pages 133-147.
    3. Giovanni Pantuso, 2021. "A node formulation for multistage stochastic programs with endogenous uncertainty," Computational Management Science, Springer, vol. 18(3), pages 325-354, July.
    4. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoxia Guo & Stein W. Wallace & Michal Kaut, 2019. "Vehicle Routing with Space- and Time-Correlated Stochastic Travel Times: Evaluating the Objective Function," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 654-670, October.
    2. Liu, Pei-chen Barry & Hansen, Mark & Mukherjee, Avijit, 2008. "Scenario-based air traffic flow management: From theory to practice," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 685-702, August.
    3. Gulpinar, Nalan & Rustem, Berc & Settergren, Reuben, 2004. "Simulation and optimization approaches to scenario tree generation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1291-1315, April.
    4. Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
    5. Almeder, Christian & Hartl, Richard F., 2013. "A metaheuristic optimization approach for a real-world stochastic flexible flow shop problem with limited buffer," International Journal of Production Economics, Elsevier, vol. 145(1), pages 88-95.
    6. Kostrova, Alisa & Britz, Wolfgang & Djanibekov, Utkur & Finger, Robert, 2016. "Monte-Carlo Simulation and Stochastic Programming in Real Options Valuation: the Case of Perennial Energy Crop Cultivation," Discussion Papers 250253, University of Bonn, Institute for Food and Resource Economics.
    7. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    8. Lei, Kaixuan & Chang, Jianxia & Long, Ruihao & Wang, Yimin & Zhang, Hongxue, 2022. "Cascade hydropower station risk operation under the condition of inflow uncertainty," Energy, Elsevier, vol. 244(PA).
    9. Stacy A. Voccia & Ann Melissa Campbell & Barrett W. Thomas, 2019. "The Same-Day Delivery Problem for Online Purchases," Service Science, INFORMS, vol. 53(1), pages 167-184, February.
    10. Liu, Chuanju & Lin, Shaochong & Shen, Zuo-Jun Max & Zhang, Junlong, 2023. "Stochastic service network design: The value of fixed routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    11. Giorgio Consigli & Vittorio Moriggia & Sebastiano Vitali, 2020. "Long-term individual financial planning under stochastic dominance constraints," Annals of Operations Research, Springer, vol. 292(2), pages 973-1000, September.
    12. Patrizia Beraldi & Maria Bruni, 2014. "A clustering approach for scenario tree reduction: an application to a stochastic programming portfolio optimization problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 934-949, October.
    13. Marlin W. Ulmer, 2020. "Horizontal combinations of online and offline approximate dynamic programming for stochastic dynamic vehicle routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 279-308, March.
    14. Bian, Zheyong & Liu, Xiang, 2019. "Mechanism design for first-mile ridesharing based on personalized requirements part II: Solution algorithm for large-scale problems," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 172-192.
    15. Marlin W. Ulmer & Barrett W. Thomas & Dirk C. Mattfeld, 2019. "Preemptive depot returns for dynamic same-day delivery," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(4), pages 327-361, December.
    16. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    17. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    18. Diana Barro & Elio Canestrelli, 2011. "Combining stochastic programming and optimal control to solve multistage stochastic optimization problems," Working Papers 2011_24, Department of Economics, University of Venice "Ca' Foscari", revised 2011.
    19. Koch, Sebastian & Klein, Robert, 2020. "Route-based approximate dynamic programming for dynamic pricing in attended home delivery," European Journal of Operational Research, Elsevier, vol. 287(2), pages 633-652.
    20. Marlin W. Ulmer & Leonard Heilig & Stefan Voß, 2017. "On the Value and Challenge of Real-Time Information in Dynamic Dispatching of Service Vehicles," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(3), pages 161-171, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:184:y:2011:i:1:p:233-271:10.1007/s10479-010-0798-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.