IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v179y2010i1p393-41910.1007-s10479-008-0464-5.html
   My bibliography  Save this article

Nature inspired genetic algorithms for hard packing problems

Author

Listed:
  • Philipp Rohlfshagen
  • John Bullinaria

Abstract

This paper presents two novel genetic algorithms (GAs) for hard industrially relevant packing problems. The design of both algorithms is inspired by aspects of molecular genetics, in particular, the modular exon-intron structure of eukaryotic genes. Two representative packing problems are used to test the utility of the proposed approach: the bin packing problem (BPP) and the multiple knapsack problem (MKP). The algorithm for the BPP, the exon shuffling GA (ESGA), is a steady-state GA with a sophisticated crossover operator that makes maximum use of the principle of natural selection to evolve feasible solutions with no explicit verification of constraint violations. The second algorithm, the Exonic GA (ExGA), implements an RNA inspired adaptive repair function necessary for the highly constrained MKP. Three different variants of this algorithm are presented and compared, which evolve a partial ordering of items using a segmented encoding that is utilised in the repair of infeasible solutions. All algorithms are tested on a range of benchmark problems, and the results indicate a very high degree of accuracy and reliability compared to other approaches in the literature. Copyright Springer Science+Business Media, LLC 2010

Suggested Citation

  • Philipp Rohlfshagen & John Bullinaria, 2010. "Nature inspired genetic algorithms for hard packing problems," Annals of Operations Research, Springer, vol. 179(1), pages 393-419, September.
  • Handle: RePEc:spr:annopr:v:179:y:2010:i:1:p:393-419:10.1007/s10479-008-0464-5
    DOI: 10.1007/s10479-008-0464-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-008-0464-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-008-0464-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scholl, Armin & Klein, Robert & Jürgens, Christian, 1996. "BISON : a fast hybrid procedure for exactly solving the one-dimensional bin packing problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 49135, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. James C. Bean, 1994. "Genetic Algorithms and Random Keys for Sequencing and Optimization," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 154-160, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianping Liu & Shunfu Jin & Wuyi Yue, 2019. "Performance evaluation and system optimization of Green cognitive radio networks with a multiple-sleep mode," Annals of Operations Research, Springer, vol. 277(2), pages 371-391, June.
    2. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paola Festa & Panos Pardalos, 2012. "Efficient solutions for the far from most string problem," Annals of Operations Research, Springer, vol. 196(1), pages 663-682, July.
    2. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    3. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    4. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    5. Qingzheng Xu & Na Wang & Lei Wang & Wei Li & Qian Sun, 2021. "Multi-Task Optimization and Multi-Task Evolutionary Computation in the Past Five Years: A Brief Review," Mathematics, MDPI, vol. 9(8), pages 1-44, April.
    6. Kalantari, Joakim & Sternberg, Henrik, 2009. "Research Outlook on a Mixed Model Transportation Network," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 41, pages 62-79.
    7. Xiao, Lei & Zhang, Xinghui & Tang, Junxuan & Zhou, Yaqin, 2020. "Joint optimization of opportunistic maintenance and production scheduling considering batch production mode and varying operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    8. Wei Wang & Yaofeng Xu & Liguo Hou, 2019. "Optimal allocation of test times for reliability growth testing with interval-valued model parameters," Journal of Risk and Reliability, , vol. 233(5), pages 791-802, October.
    9. Jun Pei & Bayi Cheng & Xinbao Liu & Panos M. Pardalos & Min Kong, 2019. "Single-machine and parallel-machine serial-batching scheduling problems with position-based learning effect and linear setup time," Annals of Operations Research, Springer, vol. 272(1), pages 217-241, January.
    10. Christos Koulamas, 1997. "Decomposition and hybrid simulated annealing heuristics for the parallel‐machine total tardiness problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 109-125, February.
    11. Saydam, Cem & Aytug, Haldun, 2003. "Accurate estimation of expected coverage: revisited," Socio-Economic Planning Sciences, Elsevier, vol. 37(1), pages 69-80, March.
    12. Lijun Wei & Zhixing Luo, & Roberto Baldacci & Andrew Lim, 2020. "A New Branch-and-Price-and-Cut Algorithm for One-Dimensional Bin-Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 428-443, April.
    13. Gonçalves, José Fernando & Resende, Mauricio G.C., 2015. "A biased random-key genetic algorithm for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 246(1), pages 86-107.
    14. F. Stefanello & L. S. Buriol & M. J. Hirsch & P. M. Pardalos & T. Querido & M. G. C. Resende & M. Ritt, 2017. "On the minimization of traffic congestion in road networks with tolls," Annals of Operations Research, Springer, vol. 249(1), pages 119-139, February.
    15. Klein, Robert & Scholl, Armin, 1999. "Computing lower bounds by destructive improvement: An application to resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 112(2), pages 322-346, January.
    16. Drexl, Andreas & Salewski, Frank, 1996. "Distribution Requirements and Compactness Constraints in School Timetabling. Part II: Methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 384, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    17. José Fernando Gonçalves & Mauricio G. C. Resende, 2011. "A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 180-201, August.
    18. Soares, Leonardo Cabral R. & Carvalho, Marco Antonio M., 2020. "Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 955-964.
    19. Braune, Roland, 2019. "Lower bounds for a bin packing problem with linear usage cost," European Journal of Operational Research, Elsevier, vol. 274(1), pages 49-64.
    20. Yamachi, Hidemi & Tsujimura, Yasuhiro & Kambayashi, Yasushi & Yamamoto, Hisashi, 2006. "Multi-objective genetic algorithm for solving N-version program design problem," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1083-1094.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:179:y:2010:i:1:p:393-419:10.1007/s10479-008-0464-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.