IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v172y2009i1p393-40410.1007-s10479-009-0641-1.html
   My bibliography  Save this article

A game-theoretic approach for downgrading the 1-median in the plane with Manhattan metric

Author

Listed:
  • Elisabeth Gassner

Abstract

This paper deals with downgrading the 1-median, i.e., changing values of parameters within certain bounds such that the optimal objective value of the location problem with respect to the new values is maximized. We suggest a game-theoretic view at this problem which leads to a characterization of an optimal solution. This approach is demonstrated by means of the Downgrading 1-median problem in the plane with Manhattan metric and implies an $\mathcal {O}(n\log^{2}n)$ time algorithm for this problem. Copyright Springer Science+Business Media, LLC 2009

Suggested Citation

  • Elisabeth Gassner, 2009. "A game-theoretic approach for downgrading the 1-median in the plane with Manhattan metric," Annals of Operations Research, Springer, vol. 172(1), pages 393-404, November.
  • Handle: RePEc:spr:annopr:v:172:y:2009:i:1:p:393-404:10.1007/s10479-009-0641-1
    DOI: 10.1007/s10479-009-0641-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-009-0641-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-009-0641-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juel, Henrik & Love, Robert F., 1983. "Hull properties in location problems," European Journal of Operational Research, Elsevier, vol. 12(3), pages 262-265, March.
    2. Sven O. Krumke & Madhav V. Marathe & Hartmut Noltemeier & R. Ravi & S. S. Ravi, 1998. "Approximation Algorithms for Certain Network Improvement Problems," Journal of Combinatorial Optimization, Springer, vol. 2(3), pages 257-288, September.
    3. Gassner, Elisabeth, 2009. "Up- and downgrading the 1-center in a network," European Journal of Operational Research, Elsevier, vol. 198(2), pages 370-377, October.
    4. Egon Balas & Eitan Zemel, 1980. "An Algorithm for Large Zero-One Knapsack Problems," Operations Research, INFORMS, vol. 28(5), pages 1130-1154, October.
    5. Burkard, Rainer E. & Lin, Yixun & Zhang, Jianzhong, 2004. "Weight reduction problems with certain bottleneck objectives," European Journal of Operational Research, Elsevier, vol. 153(1), pages 191-199, February.
    6. A. J. Goldman, 1971. "Optimal Center Location in Simple Networks," Transportation Science, INFORMS, vol. 5(2), pages 212-221, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esmaeil Afrashteh & Behrooz Alizadeh & Fahimeh Baroughi, 2020. "Optimal approaches for upgrading selective obnoxious p-median location problems on tree networks," Annals of Operations Research, Springer, vol. 289(2), pages 153-172, June.
    2. Frank Plastria, 2016. "Up- and downgrading the euclidean 1-median problem and knapsack Voronoi diagrams," Annals of Operations Research, Springer, vol. 246(1), pages 227-251, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esmaeil Afrashteh & Behrooz Alizadeh & Fahimeh Baroughi, 2020. "Optimal approaches for upgrading selective obnoxious p-median location problems on tree networks," Annals of Operations Research, Springer, vol. 289(2), pages 153-172, June.
    2. Gassner, Elisabeth, 2009. "Up- and downgrading the 1-center in a network," European Journal of Operational Research, Elsevier, vol. 198(2), pages 370-377, October.
    3. Esmaeil Afrashteh & Behrooz Alizadeh & Fahimeh Baroughi & Kien Trung Nguyen, 2018. "Linear Time Optimal Approaches for Max-Profit Inverse 1-Median Location Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-22, October.
    4. Guan, Xiucui & Zhang, Jianzhong, 2006. "A class of node based bottleneck improvement problems," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1540-1552, November.
    5. Kien Trung Nguyen, 2016. "Inverse 1-Median Problem on Block Graphs with Variable Vertex Weights," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 944-957, March.
    6. Baldomero-Naranjo, Marta & Kalcsics, Jörg & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2022. "Upgrading edges in the maximal covering location problem," European Journal of Operational Research, Elsevier, vol. 303(1), pages 14-36.
    7. M Hifi & M Michrafy, 2006. "A reactive local search-based algorithm for the disjunctively constrained knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 718-726, June.
    8. Renata Mansini & M. Grazia Speranza, 2012. "CORAL: An Exact Algorithm for the Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 399-415, August.
    9. Michael Holzhauser & Sven O. Krumke & Clemens Thielen, 2016. "Budget-constrained minimum cost flows," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1720-1745, May.
    10. Rainer Burkard & Jafar Fathali, 2007. "A polynomial method for the pos/neg weighted 3-median problem on a tree," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(2), pages 229-238, April.
    11. Altay, Nezih & Robinson Jr., Powell E. & Bretthauer, Kurt M., 2008. "Exact and heuristic solution approaches for the mixed integer setup knapsack problem," European Journal of Operational Research, Elsevier, vol. 190(3), pages 598-609, November.
    12. Jakob Puchinger & Günther R. Raidl & Ulrich Pferschy, 2010. "The Multidimensional Knapsack Problem: Structure and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 250-265, May.
    13. Mehrdad Moshtagh & Jafar Fathali & James MacGregor Smith & Nezam Mahdavi-Amiri, 2019. "Finding an optimal core on a tree network with M/G/c/c state-dependent queues," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 115-142, February.
    14. Kien Trung Nguyen & Ali Reza Sepasian, 2016. "The inverse 1-center problem on trees with variable edge lengths under Chebyshev norm and Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 872-884, October.
    15. Mulder, H.M. & Pelsmajer, M.J. & Reid, K.B., 2006. "Generalized centrality in trees," Econometric Institute Research Papers EI 2006-16, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Dell’Amico, Mauro & Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2019. "Mathematical models and decomposition methods for the multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(3), pages 886-899.
    17. Nguyen, Kien Trung & Hung, Nguyen Thanh, 2021. "The minmax regret inverse maximum weight problem," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    18. Binh Thanh Dang & Tung Khac Truong, 2022. "Binary salp swarm algorithm for discounted {0-1} knapsack problem," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-28, April.
    19. Hakimi, S.Louis, 1983. "Network location theory and contingency planning," Energy, Elsevier, vol. 8(8), pages 697-702.
    20. Cihan Çetinkaya & Samer Haffar, 2018. "A Risk-Based Location-Allocation Approach for Weapon Logistics," Logistics, MDPI, vol. 2(2), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:172:y:2009:i:1:p:393-404:10.1007/s10479-009-0641-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.