IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v65y2007i2p229-238.html
   My bibliography  Save this article

A polynomial method for the pos/neg weighted 3-median problem on a tree

Author

Listed:
  • Rainer Burkard
  • Jafar Fathali

Abstract

Let a connected undirected graph G = (V, E) be given. In the classical p-median problem we want to find a set X containing p points in G such that the sum of weighted distances from X to all vertices in V is minimized. We consider the semi-obnoxious case where every vertex has either a positive or negative weight. In this case we have two different objective functions: the sum of the minimum weighted distances from X to all vertices and the sum of the weighted minimum distances. In this paper we show that for the case p = 3 an optimal solution for the second model in a tree can be found in O(n 5 ) time. If the 3-median is restricted to vertices or if the tree is a path then the complexity can be reduced to O(n 3 ). Copyright Springer-Verlag 2007

Suggested Citation

  • Rainer Burkard & Jafar Fathali, 2007. "A polynomial method for the pos/neg weighted 3-median problem on a tree," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(2), pages 229-238, April.
  • Handle: RePEc:spr:mathme:v:65:y:2007:i:2:p:229-238
    DOI: 10.1007/s00186-006-0121-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-006-0121-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-006-0121-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. S. Ting, 1984. "A Linear-Time Algorithm for Maxisum Facility Location on Tree Networks," Transportation Science, INFORMS, vol. 18(1), pages 76-84, February.
    2. Richard L. Church & Robert S. Garfinkel, 1978. "Locating an Obnoxious Facility on a Network," Transportation Science, INFORMS, vol. 12(2), pages 107-118, May.
    3. A. J. Goldman, 1971. "Optimal Center Location in Simple Networks," Transportation Science, INFORMS, vol. 5(2), pages 212-221, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehdi Zaferanieh & Jafar Fathali, 2012. "Finding a core of a tree with pos/neg weight," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(2), pages 147-160, October.
    2. Wei Ding & Ke Qiu, 2018. "A quadratic time exact algorithm for continuous connected 2-facility location problem in trees," Journal of Combinatorial Optimization, Springer, vol. 36(4), pages 1262-1298, November.
    3. B. Jayalakshmi & Alok Singh, 2017. "A hybrid artificial bee colony algorithm for the p-median problem with positive/negative weights," OPSEARCH, Springer;Operational Research Society of India, vol. 54(1), pages 67-93, March.
    4. Rainer E. Burkard & Johannes Hatzl, 2010. "Median problems with positive and negative weights on cycles and cacti," Journal of Combinatorial Optimization, Springer, vol. 20(1), pages 27-46, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Ding & Ke Qiu, 2018. "A quadratic time exact algorithm for continuous connected 2-facility location problem in trees," Journal of Combinatorial Optimization, Springer, vol. 36(4), pages 1262-1298, November.
    2. Mehdi Zaferanieh & Jafar Fathali, 2012. "Finding a core of a tree with pos/neg weight," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(2), pages 147-160, October.
    3. Esmaeil Afrashteh & Behrooz Alizadeh & Fahimeh Baroughi, 2020. "Optimal approaches for upgrading selective obnoxious p-median location problems on tree networks," Annals of Operations Research, Springer, vol. 289(2), pages 153-172, June.
    4. Balakrishnan, K. & Changat, M. & Mulder, H.M. & Subhamathi, A.R., 2011. "Consensus Strategies for Signed Profiles on Graphs," Econometric Institute Research Papers EI2011-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Igor Averbakh & Oded Berman, 2000. "Minmax Regret Median Location on a Network Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 12(2), pages 104-110, May.
    6. Welch, S. B. & Salhi, S., 1997. "The obnoxious p facility network location problem with facility interaction," European Journal of Operational Research, Elsevier, vol. 102(2), pages 302-319, October.
    7. Batta, Rajan & Lejeune, Miguel & Prasad, Srinivas, 2014. "Public facility location using dispersion, population, and equity criteria," European Journal of Operational Research, Elsevier, vol. 234(3), pages 819-829.
    8. ReVelle, C.S. & Eiselt, H.A. & Daskin, M.S., 2008. "A bibliography for some fundamental problem categories in discrete location science," European Journal of Operational Research, Elsevier, vol. 184(3), pages 817-848, February.
    9. Trung Kien Nguyen & Nguyen Thanh Hung & Huong Nguyen-Thu, 2020. "A linear time algorithm for the p-maxian problem on trees with distance constraint," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1030-1043, November.
    10. Liying Kang & Yukun Cheng, 2010. "The p-maxian problem on block graphs," Journal of Combinatorial Optimization, Springer, vol. 20(2), pages 131-141, August.
    11. Rainer E. Burkard & Johannes Hatzl, 2010. "Median problems with positive and negative weights on cycles and cacti," Journal of Combinatorial Optimization, Springer, vol. 20(1), pages 27-46, July.
    12. Heydari, Ruhollah & Melachrinoudis, Emanuel, 2012. "Location of a semi-obnoxious facility with elliptic maximin and network minisum objectives," European Journal of Operational Research, Elsevier, vol. 223(2), pages 452-460.
    13. Pelegrín, Mercedes & Xu, Liding, 2023. "Continuous covering on networks: Improved mixed integer programming formulations," Omega, Elsevier, vol. 117(C).
    14. Malgorzata Miklas-Kalczynska & Pawel Kalczynski, 2024. "Multiple obnoxious facility location: the case of protected areas," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.
    15. Andreas Löhne & Andrea Wagner, 2017. "Solving DC programs with a polyhedral component utilizing a multiple objective linear programming solver," Journal of Global Optimization, Springer, vol. 69(2), pages 369-385, October.
    16. Chunsong Bai & Jun Du, 2024. "The Constrained 2-Maxian Problem on Cycles," Mathematics, MDPI, vol. 12(6), pages 1-9, March.
    17. Mehrdad Moshtagh & Jafar Fathali & James MacGregor Smith & Nezam Mahdavi-Amiri, 2019. "Finding an optimal core on a tree network with M/G/c/c state-dependent queues," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 115-142, February.
    18. Oded Berman & Dmitry Krass & Mozart B. C. Menezes, 2007. "Facility Reliability Issues in Network p -Median Problems: Strategic Centralization and Co-Location Effects," Operations Research, INFORMS, vol. 55(2), pages 332-350, April.
    19. Nimrod Megiddo, 1981. "The Maximum Coverage Location Problem," Discussion Papers 490, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    20. Mulder, H.M. & Pelsmajer, M.J. & Reid, K.B., 2006. "Generalized centrality in trees," Econometric Institute Research Papers EI 2006-16, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:65:y:2007:i:2:p:229-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.