IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v166y2009i1p91-10810.1007-s10479-008-0413-3.html
   My bibliography  Save this article

Solving a tactical operating room planning problem by a column-generation-based heuristic procedure with four criteria

Author

Listed:
  • H. Fei
  • C. Chu
  • N. Meskens

Abstract

In some hospitals, an “open scheduling” strategy is applied to solve the operating room planning problem; i.e., surgeons can choose any workday for his surgical cases, and the staffing of anesthetists and nurses is adjusted to maximize the efficiency of operating room utilization. In this paper, we aim at obtaining an efficient operating program for an operating theatre with several multifunctional operating rooms by using this “open scheduling” strategy. First, a mathematical model is constructed to assign surgical cases to operating rooms within one week. This model complies with the availability of operating rooms and surgeons, and its objective is not only to maximize utilization of operating rooms, but to minimize their overtime cost. Then a column-generation-based heuristic (CGBH) procedure is proposed, where four different criteria are compared with each other so as to find a solution with the best performance. In addition, the best approximate solution, obtained by this CGBH procedure after running all the criteria proposed, is compared with the lower bound obtained by an explicit column generation (CG) procedure, LP, to evaluate the distance between the approximate solution obtained and the optimum one. Although no criterion, according to the experimental results, is found superior to all other three in both robustness and quality of the solution obtained, it is found that the best solution obtained among those four criteria is often very close to LP, which means that the proposed algorithm can obtain a near optimal solution. In one word, the CGBH procedure proposed in this paper can obtain an efficient assignment of the surgical cases if the other resources (anesthesia and nursing staff, equipment, beds in the recovery room and etc.) are well organized. Copyright Springer Science+Business Media, LLC 2009

Suggested Citation

  • H. Fei & C. Chu & N. Meskens, 2009. "Solving a tactical operating room planning problem by a column-generation-based heuristic procedure with four criteria," Annals of Operations Research, Springer, vol. 166(1), pages 91-108, February.
  • Handle: RePEc:spr:annopr:v:166:y:2009:i:1:p:91-108:10.1007/s10479-008-0413-3
    DOI: 10.1007/s10479-008-0413-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-008-0413-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-008-0413-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi-Long Chen & Warren B. Powell, 1999. "Solving Parallel Machine Scheduling Problems by Column Generation," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 78-94, February.
    2. Guinet, Alain & Chaabane, Sondes, 2003. "Operating theatre planning," International Journal of Production Economics, Elsevier, vol. 85(1), pages 69-81, July.
    3. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    4. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    5. Jebali, AIda & Hadj Alouane, Atidel B. & Ladet, Pierre, 2006. "Operating rooms scheduling," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 52-62, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    2. Roshanaei, Vahid & Booth, Kyle E.C. & Aleman, Dionne M. & Urbach, David R. & Beck, J. Christopher, 2020. "Branch-and-check methods for multi-level operating room planning and scheduling," International Journal of Production Economics, Elsevier, vol. 220(C).
    3. Zhang, Jian & Dridi, Mahjoub & El Moudni, Abdellah, 2020. "Column-generation-based heuristic approaches to stochastic surgery scheduling with downstream capacity constraints," International Journal of Production Economics, Elsevier, vol. 229(C).
    4. Choi, Sangdo & Wilhelm, Wilbert E., 2014. "An approach to optimize block surgical schedules," European Journal of Operational Research, Elsevier, vol. 235(1), pages 138-148.
    5. Wang, Yu & Tang, Jiafu & Fung, Richard Y.K., 2014. "A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk," International Journal of Production Economics, Elsevier, vol. 158(C), pages 28-36.
    6. Akbarzadeh, Babak & Moslehi, Ghasem & Reisi-Nafchi, Mohammad & Maenhout, Broos, 2019. "The re-planning and scheduling of surgical cases in the operating room department after block release time with resource rescheduling," European Journal of Operational Research, Elsevier, vol. 278(2), pages 596-614.
    7. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David R., 2020. "Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling," Omega, Elsevier, vol. 93(C).
    8. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David, 2017. "Propagating logic-based Benders’ decomposition approaches for distributed operating room scheduling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 439-455.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei, H. & Chu, C. & Meskens, N. & Artiba, A., 2008. "Solving surgical cases assignment problem by a branch-and-price approach," International Journal of Production Economics, Elsevier, vol. 112(1), pages 96-108, March.
    2. Pereira Lopes, Manuel J. & de Carvalho, J.M. Valerio, 2007. "A branch-and-price algorithm for scheduling parallel machines with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1508-1527, February.
    3. Seyed Hossein Hashemi Doulabi & Louis-Martin Rousseau & Gilles Pesant, 2016. "A Constraint-Programming-Based Branch-and-Price-and-Cut Approach for Operating Room Planning and Scheduling," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 432-448, August.
    4. Degraeve, Z. & Jans, R.F., 2003. "A New Dantzig-Wolfe Reformulation And Branch-And-Price Algorithm For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Zhi‐Long Chen & Warren B. Powell, 2003. "Exact algorithms for scheduling multiple families of jobs on parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 823-840, October.
    6. Hang Xu & Zhi-Long Chen & Srinivas Rajagopal & Sundar Arunapuram, 2003. "Solving a Practical Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 37(3), pages 347-364, August.
    7. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    8. Jans, Raf, 2010. "Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 204(2), pages 251-254, July.
    9. Daniel Villeneuve & Jacques Desrosiers & Marco Lübbecke & François Soumis, 2005. "On Compact Formulations for Integer Programs Solved by Column Generation," Annals of Operations Research, Springer, vol. 139(1), pages 375-388, October.
    10. Wang, Ting & Baldacci, Roberto & Lim, Andrew & Hu, Qian, 2018. "A branch-and-price algorithm for scheduling of deteriorating jobs and flexible periodic maintenance on a single machine," European Journal of Operational Research, Elsevier, vol. 271(3), pages 826-838.
    11. repec:ipg:wpaper:2013-014 is not listed on IDEAS
    12. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    13. Melanie Erhard, 2021. "Flexible staffing of physicians with column generation," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 212-252, March.
    14. repec:ipg:wpaper:14 is not listed on IDEAS
    15. Barry C. Smith & Ellis L. Johnson, 2006. "Robust Airline Fleet Assignment: Imposing Station Purity Using Station Decomposition," Transportation Science, INFORMS, vol. 40(4), pages 497-516, November.
    16. Rigo, Cezar Antônio & Seman, Laio Oriel & Camponogara, Eduardo & Morsch Filho, Edemar & Bezerra, Eduardo Augusto & Munari, Pedro, 2022. "A branch-and-price algorithm for nanosatellite task scheduling to improve mission quality-of-service," European Journal of Operational Research, Elsevier, vol. 303(1), pages 168-183.
    17. Fırat, M. & Briskorn, D. & Laugier, A., 2016. "A Branch-and-Price algorithm for stable workforce assignments with hierarchical skills," European Journal of Operational Research, Elsevier, vol. 251(2), pages 676-685.
    18. Bani, Abderrahman & El Hallaoui, Issmail & Corréa, Ayoub Insa & Tahir, Adil, 2023. "Solving a real-world multi-depot multi-period petrol replenishment problem with complex loading constraints," European Journal of Operational Research, Elsevier, vol. 311(1), pages 154-172.
    19. Sung, Inkyung & Lee, Taesik, 2016. "Optimal allocation of emergency medical resources in a mass casualty incident: Patient prioritization by column generation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 623-634.
    20. Borgonjon, Tessa & Maenhout, Broos, 2022. "An exact approach for the personnel task rescheduling problem with task retiming," European Journal of Operational Research, Elsevier, vol. 296(2), pages 465-484.
    21. Theodore Athanasopoulos & Ioannis Minis, 2013. "Efficient techniques for the multi-period vehicle routing problem with time windows within a branch and price framework," Annals of Operations Research, Springer, vol. 206(1), pages 1-22, July.
    22. Jonas Christoffer Villumsen & Joe Naoum‐Sawaya, 2016. "Column generation for stochastic green telecommunication network planning with switchable base stations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(5), pages 351-366, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:166:y:2009:i:1:p:91-108:10.1007/s10479-008-0413-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.