IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v144y2006i1p111-13210.1007-s10479-006-0017-8.html
   My bibliography  Save this article

The crew timetabling problem: An extension of the crew scheduling problem

Author

Listed:
  • Marta Gomes
  • Luís Cavique
  • Isabel Themido

Abstract

In some urban transportation companies driving periods are short when compared with the total duty time, leading to long non-driving periods that can be used as cover time. This paper presents the Crew Timetabling Problem, an extension of the Crew Scheduling Problem in which crew timetables are obtained by levelling the cover crew resources. An objective function for this problem is proposed in order to balance the number of driving and cover crews. A Lisbon Underground case study is used to illustrate the Crew Timetabling Problem. The problem is represented in a multigraph and solved by a tabu search-based heuristic. Copyright Springer Science+Business Media, LLC 2006

Suggested Citation

  • Marta Gomes & Luís Cavique & Isabel Themido, 2006. "The crew timetabling problem: An extension of the crew scheduling problem," Annals of Operations Research, Springer, vol. 144(1), pages 111-132, April.
  • Handle: RePEc:spr:annopr:v:144:y:2006:i:1:p:111-132:10.1007/s10479-006-0017-8
    DOI: 10.1007/s10479-006-0017-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-0017-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-006-0017-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L Cavique & C Rego & I Themido, 1999. "Subgraph ejection chains and tabu search for the crew scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(6), pages 608-616, June.
    2. Neumann, K. & Zimmermann, J., 1999. "Resource levelling for projects with schedule-dependent time windows," European Journal of Operational Research, Elsevier, vol. 117(3), pages 591-605, September.
    3. Bandelloni, M. & Tucci, M. & Rinaldi, R., 1994. "Optimal resource leveling using non-serial dyanamic programming," European Journal of Operational Research, Elsevier, vol. 78(2), pages 162-177, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongbo Li & Linwen Zheng & Hanyu Zhu, 2023. "Resource leveling in projects with flexible structures," Annals of Operations Research, Springer, vol. 321(1), pages 311-342, February.
    2. Cédric Verbeeck & Vincent Peteghem & Mario Vanhoucke & Pieter Vansteenwegen & El-Houssaine Aghezzaf, 2017. "A metaheuristic solution approach for the time-constrained project scheduling problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 353-371, March.
    3. Neumann, K. & Zimmermann, J., 2000. "Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints," European Journal of Operational Research, Elsevier, vol. 127(2), pages 425-443, December.
    4. Hongbo Li & Erik Demeulemeester, 2016. "A genetic algorithm for the robust resource leveling problem," Journal of Scheduling, Springer, vol. 19(1), pages 43-60, February.
    5. Gahm, Christian & Dünnwald, Bastian & Sahamie, Ramin, 2014. "A multi-criteria master production scheduling approach for special purpose machinery," International Journal of Production Economics, Elsevier, vol. 149(C), pages 89-101.
    6. Neumann, K. & Schwindt, C. & Zimmermann, J., 2003. "Order-based neighborhoods for project scheduling with nonregular objective functions," European Journal of Operational Research, Elsevier, vol. 149(2), pages 325-343, September.
    7. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    8. Rodriguez-Tello, Eduardo & Hao, Jin-Kao & Torres-Jimenez, Jose, 2008. "An improved simulated annealing algorithm for bandwidth minimization," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1319-1335, March.
    9. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.
    10. Kreter, Stefan & Schutt, Andreas & Stuckey, Peter J. & Zimmermann, Jürgen, 2018. "Mixed-integer linear programming and constraint programming formulations for solving resource availability cost problems," European Journal of Operational Research, Elsevier, vol. 266(2), pages 472-486.
    11. Rainer Kolisch & Christian Heimerl, 2012. "An efficient metaheuristic for integrated scheduling and staffing IT projects based on a generalized minimum cost flow network," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(2), pages 111-127, March.
    12. Anthony Han & Elvis Li, 2014. "A constraint programming-based approach to the crew scheduling problem of the Taipei mass rapid transit system," Annals of Operations Research, Springer, vol. 223(1), pages 173-193, December.
    13. Mohamed Haouari & Farah Zeghal Mansour & Hanif D. Sherali, 2019. "A New Compact Formulation for the Daily Crew Pairing Problem," Transportation Science, INFORMS, vol. 53(3), pages 811-828, May.
    14. Shen, Yindong & Peng, Kunkun & Chen, Kai & Li, Jingpeng, 2013. "Evolutionary crew scheduling with adaptive chromosomes," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 174-185.
    15. Neumann, K. & Zimmermann, J., 1999. "Resource levelling for projects with schedule-dependent time windows," European Journal of Operational Research, Elsevier, vol. 117(3), pages 591-605, September.
    16. André Schnabel & Carolin Kellenbrink & Stefan Helber, 2018. "Profit-oriented scheduling of resource-constrained projects with flexible capacity constraints," Business Research, Springer;German Academic Association for Business Research, vol. 11(2), pages 329-356, September.
    17. Kress, Dominik & Meiswinkel, Sebastian & Pesch, Erwin, 2019. "Straddle carrier routing at seaport container terminals in the presence of short term quay crane buffer areas," European Journal of Operational Research, Elsevier, vol. 279(3), pages 732-750.
    18. Karen Puttkammer & Rainer Kleber & Tobias Schulz & Karl Inderfurth, 2011. "Simultane Maschinenbelegungs- und Personaleinsatzplanung in KMUs anhand eines Fallbeispiels aus der Druckereibranche," FEMM Working Papers 110010, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    19. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    20. Haase, Knut, 1999. "Retail business staff scheduling under complex labor relations," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 511, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:144:y:2006:i:1:p:111-132:10.1007/s10479-006-0017-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.