IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v131y2004i1p305-32410.1023-banor.0000039524.09792.c9.html
   My bibliography  Save this article

A Population-Based Approach to the Resource-Constrained Project Scheduling Problem

Author

Listed:
  • Vicente Valls
  • Francisco Ballestín
  • Sacramento Quintanilla

Abstract

We present a population-based approach to the RCPSP. The procedure has two phases. The first phase handles the initial construction of a population of schedules and these are then evolved until high quality solutions are obtained. The evolution of the population is driven by the alternative application of an efficient improving procedure for locally improving the use of resources, and a mechanism for combining schedules that blends scatter search and path relinking characteristics. The objective of the second phase is to explore in depth those vicinities near the high quality schedules. Computational experiments on the standard j120 set, generated using ProGen, show that our algorithm produces higher quality solutions than state-of-the-art heuristics for the RCPSP in an average time of less than five seconds. Copyright Kluwer Academic Publishers 2004

Suggested Citation

  • Vicente Valls & Francisco Ballestín & Sacramento Quintanilla, 2004. "A Population-Based Approach to the Resource-Constrained Project Scheduling Problem," Annals of Operations Research, Springer, vol. 131(1), pages 305-324, October.
  • Handle: RePEc:spr:annopr:v:131:y:2004:i:1:p:305-324:10.1023/b:anor.0000039524.09792.c9
    DOI: 10.1023/B:ANOR.0000039524.09792.c9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/B:ANOR.0000039524.09792.c9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/B:ANOR.0000039524.09792.c9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2005. "Justification and RCPSP: A technique that pays," European Journal of Operational Research, Elsevier, vol. 165(2), pages 375-386, September.
    2. Sepehr Proon & Mingzhou Jin, 2011. "A genetic algorithm with neighborhood search for the resource‐constrained project scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(2), pages 73-82, March.
    3. Coelho, José & Vanhoucke, Mario, 2011. "Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers," European Journal of Operational Research, Elsevier, vol. 213(1), pages 73-82, August.
    4. Kadri, Roubila Lilia & Boctor, Fayez F., 2018. "An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case," European Journal of Operational Research, Elsevier, vol. 265(2), pages 454-462.
    5. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    6. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    7. Kolisch, Rainer & Hartmann, Sonke, 2006. "Experimental investigation of heuristics for resource-constrained project scheduling: An update," European Journal of Operational Research, Elsevier, vol. 174(1), pages 23-37, October.
    8. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2008. "A hybrid genetic algorithm for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(2), pages 495-508, March.
    9. Xiaowei Lin & Jing Zhou & Lianmin Zhang & Yinlian Zeng, 2021. "Revenue sharing for resource reallocation among project activity contractors," Annals of Operations Research, Springer, vol. 301(1), pages 121-141, June.
    10. Zamani, Reza, 2013. "A competitive magnet-based genetic algorithm for solving the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 552-559.
    11. Debels, Dieter & De Reyck, Bert & Leus, Roel & Vanhoucke, Mario, 2006. "A hybrid scatter search/electromagnetism meta-heuristic for project scheduling," European Journal of Operational Research, Elsevier, vol. 169(2), pages 638-653, March.
    12. Leyman, Pieter & Vanhoucke, Mario, 2017. "Capital- and resource-constrained project scheduling with net present value optimization," European Journal of Operational Research, Elsevier, vol. 256(3), pages 757-776.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:131:y:2004:i:1:p:305-324:10.1023/b:anor.0000039524.09792.c9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.