IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v229y2013i2p552-559.html
   My bibliography  Save this article

A competitive magnet-based genetic algorithm for solving the resource-constrained project scheduling problem

Author

Listed:
  • Zamani, Reza

Abstract

This paper presents a genetic algorithm for solving the resource-constrained project scheduling problem. The innovative component of the algorithm is the use of a magnet-based crossover operator that can preserve up to two contiguous parts from the receiver and one contiguous part from the donator genotype. For this purpose, a number of genes in the receiver genotype absorb one another to have the same order and contiguity they have in the donator genotype. The ability of maintaining up to three contiguous parts from two parents distinguishes this crossover operator from the powerful and famous two-point crossover operator, which can maintain only two contiguous parts, both from the same parent. Comparing the performance of the new procedure with that of other procedures indicates its effectiveness and competence.

Suggested Citation

  • Zamani, Reza, 2013. "A competitive magnet-based genetic algorithm for solving the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 552-559.
  • Handle: RePEc:eee:ejores:v:229:y:2013:i:2:p:552-559
    DOI: 10.1016/j.ejor.2013.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713002130
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mireille Palpant & Christian Artigues & Philippe Michelon, 2004. "LSSPER: Solving the Resource-Constrained Project Scheduling Problem with Large Neighbourhood Search," Annals of Operations Research, Springer, vol. 131(1), pages 237-257, October.
    2. Valls, Vicente & Quintanilla, Sacramento & Ballestin, Francisco, 2003. "Resource-constrained project scheduling: A critical activity reordering heuristic," European Journal of Operational Research, Elsevier, vol. 149(2), pages 282-301, September.
    3. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    4. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2008. "A hybrid genetic algorithm for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(2), pages 495-508, March.
    5. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2005. "Justification and RCPSP: A technique that pays," European Journal of Operational Research, Elsevier, vol. 165(2), pages 375-386, September.
    6. Coelho, José & Vanhoucke, Mario, 2011. "Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers," European Journal of Operational Research, Elsevier, vol. 213(1), pages 73-82, August.
    7. D. Debels & M. Vanhoucke, 2005. "A Decomposition-Based Heuristic For The Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/293, Ghent University, Faculty of Economics and Business Administration.
    8. Zamani, Reza & Lau, Sim Kim, 2010. "Embedding learning capability in Lagrangean relaxation: An application to the travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 82-88, February.
    9. Vicente Valls & Francisco Ballestín & Sacramento Quintanilla, 2004. "A Population-Based Approach to the Resource-Constrained Project Scheduling Problem," Annals of Operations Research, Springer, vol. 131(1), pages 305-324, October.
    10. Li, K. Y. & Willis, R. J., 1992. "An iterative scheduling technique for resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 56(3), pages 370-379, February.
    11. Deblaere, Filip & Demeulemeester, Erik & Herroelen, Willy, 2011. "Proactive policies for the stochastic resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 214(2), pages 308-316, October.
    12. Boctor, Fayer F., 1990. "Some efficient multi-heuristic procedures for resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 49(1), pages 3-13, November.
    13. J. Alcaraz & C. Maroto, 2001. "A Robust Genetic Algorithm for Resource Allocation in Project Scheduling," Annals of Operations Research, Springer, vol. 102(1), pages 83-109, February.
    14. Pilar Tormos & Antonio Lova, 2001. "A Competitive Heuristic Solution Technique for Resource-Constrained Project Scheduling," Annals of Operations Research, Springer, vol. 102(1), pages 65-81, February.
    15. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    16. Kolisch, Rainer & Hartmann, Sonke, 2006. "Experimental investigation of heuristics for resource-constrained project scheduling: An update," European Journal of Operational Research, Elsevier, vol. 174(1), pages 23-37, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Ying & Zhou, Jing & Lim, Andrew & Hu, Qian, 2023. "A tree search heuristic for the resource constrained project scheduling problem with transfer times," European Journal of Operational Research, Elsevier, vol. 304(3), pages 939-951.
    2. Kellenbrink, Carolin & Helber, Stefan, 2015. "Scheduling resource-constrained projects with a flexible project structure," European Journal of Operational Research, Elsevier, vol. 246(2), pages 379-391.
    3. Kadri, Roubila Lilia & Boctor, Fayez F., 2018. "An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case," European Journal of Operational Research, Elsevier, vol. 265(2), pages 454-462.
    4. Zhenyuan Liu & Lei Xiao & Jing Tian, 2016. "An activity-list-based nested partitions algorithm for resource-constrained project scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4744-4758, August.
    5. Mohammad Rostami & Morteza Bagherpour, 2020. "A lagrangian relaxation algorithm for facility location of resource-constrained decentralized multi-project scheduling problems," Operational Research, Springer, vol. 20(2), pages 857-897, June.
    6. Yang-Kuei Lin & Chin Soon Chong, 2017. "Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 28(5), pages 1189-1201, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolisch, Rainer & Hartmann, Sonke, 2006. "Experimental investigation of heuristics for resource-constrained project scheduling: An update," European Journal of Operational Research, Elsevier, vol. 174(1), pages 23-37, October.
    2. Coelho, José & Vanhoucke, Mario, 2011. "Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers," European Journal of Operational Research, Elsevier, vol. 213(1), pages 73-82, August.
    3. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2008. "A hybrid genetic algorithm for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(2), pages 495-508, March.
    4. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    5. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.
    6. Moumene, Khaled & Ferland, Jacques A., 2009. "Activity list representation for a generalization of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 199(1), pages 46-54, November.
    7. Sepehr Proon & Mingzhou Jin, 2011. "A genetic algorithm with neighborhood search for the resource‐constrained project scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(2), pages 73-82, March.
    8. Tseng, Lin-Yu & Chen, Shih-Chieh, 2006. "A hybrid metaheuristic for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 175(2), pages 707-721, December.
    9. Ranjbar, Mohammad & De Reyck, Bert & Kianfar, Fereydoon, 2009. "A hybrid scatter search for the discrete time/resource trade-off problem in project scheduling," European Journal of Operational Research, Elsevier, vol. 193(1), pages 35-48, February.
    10. Debels, Dieter & De Reyck, Bert & Leus, Roel & Vanhoucke, Mario, 2006. "A hybrid scatter search/electromagnetism meta-heuristic for project scheduling," European Journal of Operational Research, Elsevier, vol. 169(2), pages 638-653, March.
    11. Vanhoucke, Mario & Coelho, José, 2016. "An approach using SAT solvers for the RCPSP with logical constraints," European Journal of Operational Research, Elsevier, vol. 249(2), pages 577-591.
    12. Xabier A. Martin & Rosa Herrero & Angel A. Juan & Javier Panadero, 2024. "An Agile Adaptive Biased-Randomized Discrete-Event Heuristic for the Resource-Constrained Project Scheduling Problem," Mathematics, MDPI, vol. 12(12), pages 1-21, June.
    13. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2005. "Justification and RCPSP: A technique that pays," European Journal of Operational Research, Elsevier, vol. 165(2), pages 375-386, September.
    14. Debels, D. & Vanhoucke, M., 2006. "Meta-Heuristic resource constrained project scheduling: solution space restrictions and neighbourhood extensions," Vlerick Leuven Gent Management School Working Paper Series 2006-18, Vlerick Leuven Gent Management School.
    15. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    16. D. Debels & M. Vanhoucke, 2005. "A Decomposition-Based Heuristic For The Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/293, Ghent University, Faculty of Economics and Business Administration.
    17. André Schnabel & Carolin Kellenbrink & Stefan Helber, 2018. "Profit-oriented scheduling of resource-constrained projects with flexible capacity constraints," Business Research, Springer;German Academic Association for Business Research, vol. 11(2), pages 329-356, September.
    18. Servranckx, Tom & Coelho, José & Vanhoucke, Mario, 2024. "A genetic algorithm for the Resource-Constrained Project Scheduling Problem with Alternative Subgraphs using a boolean satisfiability solver," European Journal of Operational Research, Elsevier, vol. 316(3), pages 815-827.
    19. Zdeněk Hanzálek & Přemysl Šůcha, 2017. "Time symmetry of resource constrained project scheduling with general temporal constraints and take-give resources," Annals of Operations Research, Springer, vol. 248(1), pages 209-237, January.
    20. Jürgen Kuster & Dietmar Jannach & Gerhard Friedrich, 2010. "Applying Local Rescheduling in response to schedule disruptions," Annals of Operations Research, Springer, vol. 180(1), pages 265-282, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:229:y:2013:i:2:p:552-559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.