IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v103y2019i1d10.1007_s10182-018-0321-z.html
   My bibliography  Save this article

Estimation of the finite population distribution function using a global penalized calibration method

Author

Listed:
  • J. A. Mayor-Gallego

    (University of Seville)

  • J. L. Moreno-Rebollo

    (University of Seville)

  • M. D. Jiménez-Gamero

    (University of Seville)

Abstract

Auxiliary information $${\varvec{x}}$$ x is commonly used in survey sampling at the estimation stage. We propose an estimator of the finite population distribution function $$F_{y}(t)$$ F y ( t ) when $${\varvec{x}}$$ x is available for all units in the population and related to the study variable y by a superpopulation model. The new estimator integrates ideas from model calibration and penalized calibration. Calibration estimates of $$F_{y}(t)$$ F y ( t ) with the weights satisfying benchmark constraints on the fitted values distribution function $$\hat{F}_{\hat{y}}=F_{\hat{y}}$$ F ^ y ^ = F y ^ on a set of fixed values of t can be found in the literature. Alternatively, our proposal $$\hat{F}_{y\omega }$$ F ^ y ω seeks an estimator taking into account a global distance $$D(\hat{F}_{\hat{y}\omega },F_{\hat{y}})$$ D ( F ^ y ^ ω , F y ^ ) between $$\hat{F}_{\hat{y}\omega }$$ F ^ y ^ ω and $${F}_{\hat{y}},$$ F y ^ , and a penalty parameter $$\alpha $$ α that assesses the importance of this term in the objective function. The weights are explicitly obtained for the $$L^2$$ L 2 distance and conditions are given so that $$\hat{F}_{y\omega }$$ F ^ y ω to be a distribution function. In this case $$\hat{F}_{y\omega }$$ F ^ y ω can also be used to estimate the population quantiles. Moreover, results on the asymptotic unbiasedness and the asymptotic variance of $$\hat{F}_{y\omega }$$ F ^ y ω , for a fixed $$\alpha $$ α , are obtained. The results of a simulation study, designed to compare the proposed estimator to other existing ones, reveal that its performance is quite competitive.

Suggested Citation

  • J. A. Mayor-Gallego & J. L. Moreno-Rebollo & M. D. Jiménez-Gamero, 2019. "Estimation of the finite population distribution function using a global penalized calibration method," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 1-35, March.
  • Handle: RePEc:spr:alstar:v:103:y:2019:i:1:d:10.1007_s10182-018-0321-z
    DOI: 10.1007/s10182-018-0321-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-018-0321-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-018-0321-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antal, Erika & Tillé, Yves, 2011. "A Direct Bootstrap Method for Complex Sampling Designs From a Finite Population," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 534-543.
    2. Lucio Barabesi & Giancarlo Diana & Pier Perri, 2015. "Gini index estimation in randomized response surveys," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 45-62, January.
    3. Jianqiang C. Wang & J. D. Opsomer, 2011. "On asymptotic normality and variance estimation for nondifferentiable survey estimators," Biometrika, Biometrika Trust, vol. 98(1), pages 91-106.
    4. Wu C. & Sitter R. R, 2001. "A Model-Calibration Approach to Using Complete Auxiliary Information From Survey Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 185-193, March.
    5. A. H. Welsh & Elvezio Ronchetti, 1998. "Bias‐calibrated estimation from sample surveys containing outliers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 413-428.
    6. Erika Antal & Yves Tillé, 2014. "A new resampling method for sampling designs without replacement: the doubled half bootstrap," Computational Statistics, Springer, vol. 29(5), pages 1345-1363, October.
    7. Beat Hulliger & Tobias Schoch, 2014. "Robust, distribution-free inference for income share ratios under complex sampling," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(1), pages 63-85, January.
    8. M. Rueda & I. Sánchez-Borrego & A. Arcos & S. Martínez, 2010. "Model-calibration estimation of the distribution function using nonparametric regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(1), pages 33-44, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria del Mar Rueda, 2019. "Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1077-1081, December.
    2. María del Mar Rueda & Sergio Martínez-Puertas & Luis Castro-Martín, 2022. "Methods to Counter Self-Selection Bias in Estimations of the Distribution Function and Quantiles," Mathematics, MDPI, vol. 10(24), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domingo Morales & María del Mar Rueda & Dolores Esteban, 2018. "Model-Assisted Estimation of Small Area Poverty Measures: An Application within the Valencia Region in Spain," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(3), pages 873-900, August.
    2. Zhao, Puying & Haziza, David & Wu, Changbao, 2020. "Survey weighted estimating equation inference with nuisance functionals," Journal of Econometrics, Elsevier, vol. 216(2), pages 516-536.
    3. Zhan Liu & Chaofeng Tu & Yingli Pan, 2022. "Model-assisted calibration with SCAD to estimated control for non-probability samples," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 849-879, October.
    4. María del Mar Rueda & Beatriz Cobo & Antonio Arcos, 2021. "Regression Models in Complex Survey Sampling for Sensitive Quantitative Variables," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
    5. Żądło Tomasz, 2021. "On the generalisation of Quatember’s bootstrap," Statistics in Transition New Series, Polish Statistical Association, vol. 22(1), pages 163-178, March.
    6. Maria del Mar Rueda, 2019. "Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1077-1081, December.
    7. Pier Luigi Conti & Daniela Marella, 2015. "Inference for Quantiles of a Finite Population: Asymptotic versus Resampling Results," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 545-561, June.
    8. Tomasz Żądło, 2021. "On the generalisation of Quatember's bootstrap," Statistics in Transition New Series, Polish Statistical Association, vol. 22(1), pages 163-178, March.
    9. Debashis Ghosh & Michael S. Sabel, 2022. "A Weighted Sample Framework to Incorporate External Calculators for Risk Modeling," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 363-379, December.
    10. G. Bertarelli & R. Chambers & N. Salvati, 2021. "Outlier robust small domain estimation via bias correction and robust bootstrapping," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 331-357, March.
    11. Ieva Burakauskaitė & Andrius Čiginas, 2023. "An Approach to Integrating a Non-Probability Sample in the Population Census," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    12. M. Rueda & I. Sánchez-Borrego & A. Arcos & S. Martínez, 2010. "Model-calibration estimation of the distribution function using nonparametric regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(1), pages 33-44, January.
    13. Denis Devaud & Yves Tillé, 2019. "Deville and Särndal’s calibration: revisiting a 25-years-old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1033-1065, December.
    14. Luca Sartore & Kelly Toppin & Linda Young & Clifford Spiegelman, 2019. "Developing Integer Calibration Weights for Census of Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 26-48, March.
    15. Enrico Fabrizi & Caterina Giusti & Nicola Salvati & Nikos Tzavidis, 2014. "Mapping average equivalized income using robust small area methods," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 685-701, August.
    16. A. Arcos & M. Rueda & M. Martínez-Miranda, 2005. "Using multiparametric auxiliary information at the estimation stage," Statistical Papers, Springer, vol. 46(3), pages 339-358, July.
    17. Wayne A. Fuller & Jason C. Legg & Yang Li, 2017. "Bootstrap Variance Estimation for Rejective Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1562-1570, October.
    18. Barranco-Chamorro, I. & Jiménez-Gamero, M.D. & Moreno-Rebollo, J.L. & Muñoz-Pichardo, J.M., 2012. "Case-deletion type diagnostics for calibration estimators in survey sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2219-2236.
    19. Sayed A. Mostafa & Ibrahim A. Ahmad, 2021. "Kernel Density Estimation Based on the Distinct Units in Sampling with Replacement," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 507-547, November.
    20. Pier Luigi Conti & Alberto Iorio & Alessio Guandalini & Daniela Marella & Paola Vicard & Vincenzina Vitale, 2020. "On the estimation of the Lorenz curve under complex sampling designs," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:103:y:2019:i:1:d:10.1007_s10182-018-0321-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.