IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v70y2018i5d10.1007_s10463-017-0615-z.html
   My bibliography  Save this article

Hybrid schemes for exact conditional inference in discrete exponential families

Author

Listed:
  • David Kahle

    (Baylor University)

  • Ruriko Yoshida

    (Naval Postgraduate School)

  • Luis Garcia-Puente

    (Sam Houston State University)

Abstract

Exact conditional goodness-of-fit tests for discrete exponential family models can be conducted via Monte Carlo estimation of p values by sampling from the conditional distribution of multiway contingency tables. The two most popular methods for such sampling are Markov chain Monte Carlo (MCMC) and sequential importance sampling (SIS). In this work we consider various ways to hybridize the two schemes and propose one standout strategy as a good general purpose method for conducting inference. The proposed method runs many parallel chains initialized at SIS samples across the fiber. When a Markov basis is unavailable, the proposed scheme uses a lattice basis with intermittent SIS proposals to guarantee irreducibility and asymptotic unbiasedness. The scheme alleviates many of the challenges faced by the MCMC and SIS schemes individually while largely retaining their strengths. It also provides diagnostics that guide and lend credibility to the procedure. Simulations demonstrate the viability of the approach.

Suggested Citation

  • David Kahle & Ruriko Yoshida & Luis Garcia-Puente, 2018. "Hybrid schemes for exact conditional inference in discrete exponential families," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 983-1011, October.
  • Handle: RePEc:spr:aistmt:v:70:y:2018:i:5:d:10.1007_s10463-017-0615-z
    DOI: 10.1007/s10463-017-0615-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-017-0615-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-017-0615-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claude J. P. Bélisle & H. Edwin Romeijn & Robert L. Smith, 1993. "Hit-and-Run Algorithms for Generating Multivariate Distributions," Mathematics of Operations Research, INFORMS, vol. 18(2), pages 255-266, May.
    2. Yuguo Chen & Persi Diaconis & Susan P. Holmes & Jun S. Liu, 2005. "Sequential Monte Carlo Methods for Statistical Analysis of Tables," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 109-120, March.
    3. Eddelbuettel, Dirk & Francois, Romain, 2011. "Rcpp: Seamless R and C++ Integration," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i08).
    4. Tom Snijders, 1991. "Enumeration and simulation methods for 0–1 matrices with given marginals," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 397-417, September.
    5. James M. Boyett, 1979. "Random R×C Tables with Given Row and Column Totals," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(3), pages 329-332, November.
    6. Hara, Hisayuki & Takemura, Akimichi & Yoshida, Ruriko, 2010. "On connectivity of fibers with positive marginals in multiple logistic regression," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 909-925, April.
    7. W. M. Patefield, 1981. "An Efficient Method of Generating Random R × C Tables with Given Row and Column Totals," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 30(1), pages 91-97, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Riani & Anthony C. Atkinson & Francesca Torti & Aldo Corbellini, 2022. "Robust correspondence analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1381-1401, November.
    2. Jing Xi & Ruriko Yoshida & David Haws, 2013. "Estimating the number of zero-one multi-way tables via sequential importance sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 763-783, August.
    3. Yuguo Chen & Dylan Small, 2005. "Exact tests for the rasch model via sequential importance sampling," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 11-30, March.
    4. Benchong Li & Liya Fu, 2018. "Exact test of goodness of fit for binomial distribution," Statistical Papers, Springer, vol. 59(3), pages 851-860, September.
    5. Wilson J. Wright & Peter N. Neitlich & Alyssa E. Shiel & Mevin B. Hooten, 2022. "Mechanistic spatial models for heavy metal pollution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    6. Stephen Baumert & Archis Ghate & Seksan Kiatsupaibul & Yanfang Shen & Robert L. Smith & Zelda B. Zabinsky, 2009. "Discrete Hit-and-Run for Sampling Points from Arbitrary Distributions Over Subsets of Integer Hyperrectangles," Operations Research, INFORMS, vol. 57(3), pages 727-739, June.
    7. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    8. Borkowf, Craig B., 2004. "An efficient algorithm for generating two-way contingency tables with fixed marginal totals and arbitrary mean proportions, with applications to permutation tests," Computational Statistics & Data Analysis, Elsevier, vol. 44(3), pages 431-449, January.
    9. Fernández de Marcos Giménez de los Galanes, Alberto, 2022. "Data-driven stabilizations of goodness-of-fit tests," DES - Working Papers. Statistics and Econometrics. WS 35324, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Sloot Henrik, 2022. "Implementing Markovian models for extendible Marshall–Olkin distributions," Dependence Modeling, De Gruyter, vol. 10(1), pages 308-343, January.
    11. Cindy Frascolla & Guillaume Lecuelle & Pascal Schlich & Hervé Cardot, 2022. "Two sample tests for Semi-Markov processes with parametric sojourn time distributions: an application in sensory analysis," Computational Statistics, Springer, vol. 37(5), pages 2553-2580, November.
    12. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    13. François Bachoc & Marc G Genton & Klaus Nordhausen & Anne Ruiz-Gazen & Joni Virta, 2020. "Spatial blind source separation," Biometrika, Biometrika Trust, vol. 107(3), pages 627-646.
    14. Bill Venables, 2017. "JOHN M. CHAMBERS . Extending R . Boca Raton : CRC Press," Biometrics, The International Biometric Society, vol. 73(2), pages 709-710, June.
    15. Dyer, Martin & Greenhill, Catherine & Kleer, Pieter & Ross, James & Stougie, Leen, 2021. "Sampling hypergraphs with given degrees," Other publications TiSEM 2d323767-8066-4c28-92cc-b, Tilburg University, School of Economics and Management.
    16. Kim, Donguk & Agresti, Alan, 1997. "Nearly exact tests of conditional independence and marginal homogeneity for sparse contingency tables," Computational Statistics & Data Analysis, Elsevier, vol. 24(1), pages 89-104, March.
    17. Anoek Castelein & Dennis Fok & Richard Paap, 2020. "A multinomial and rank-ordered logit model with inter- and intra-individual heteroscedasticity," Tinbergen Institute Discussion Papers 20-069/III, Tinbergen Institute.
    18. Virginia X. He & Matt P. Wand, 2024. "Bayesian generalized additive model selection including a fast variational option," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 639-668, September.
    19. Adrien Ickowicz & Jessica Ford & Keith Hayes, 2019. "A Mixture Model Approach for Compositional Data: Inferring Land-Use Influence on Point-Referenced Water Quality Measurements," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 719-739, December.
    20. James Joseph Balamuta & Steven Andrew Culpepper, 2022. "Exploratory Restricted Latent Class Models with Monotonicity Requirements under PÒLYA–GAMMA Data Augmentation," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 903-945, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:70:y:2018:i:5:d:10.1007_s10463-017-0615-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.