IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v9y2015i2p143-175.html
   My bibliography  Save this article

Basic statistics for distributional symbolic variables: a new metric-based approach

Author

Listed:
  • Antonio Irpino
  • Rosanna Verde

Abstract

In data mining it is usual to describe a group of measurements using summary statistics or through empirical distribution functions. Symbolic data analysis (SDA) aims at the treatment of such kinds of data, allowing the description and the analysis of conceptual data or of macrodata summarizing classical data. In the conceptual framework of SDA, the paper aims at presenting new basic statistics for distribution-valued variables, i.e., variables whose realizations are distributions. The proposed measures extend some classical univariate (mean, variance, standard deviation) and bivariate (covariance and correlation) basic statistics to distribution-valued variables, taking into account the nature and the variability of such data. The novel statistics are based on a distance between distributions: the $$\ell _2$$ ℓ 2 Wasserstein distance. A comparison with other univariate and bivariate statistics presented in the literature points out some relevant properties of the proposed ones. An application on a clinic dataset shows the main differences in terms of interpretation of results. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Antonio Irpino & Rosanna Verde, 2015. "Basic statistics for distributional symbolic variables: a new metric-based approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(2), pages 143-175, June.
  • Handle: RePEc:spr:advdac:v:9:y:2015:i:2:p:143-175
    DOI: 10.1007/s11634-014-0176-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11634-014-0176-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11634-014-0176-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ginestet, Cedric E. & Simmons, Andrew & Kolaczyk, Eric D., 2012. "Weighted Frechet means as convex combinations in metric spaces: Properties and generalized median inequalities," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1859-1863.
    2. Billard L. & Diday E., 2003. "From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 470-487, January.
    3. Alison L. Gibbs & Francis Edward Su, 2002. "On Choosing and Bounding Probability Metrics," International Statistical Review, International Statistical Institute, vol. 70(3), pages 419-435, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dias, Sónia & Brito, Paula & Amaral, Paula, 2021. "Discriminant analysis of distributional data via fractional programming," European Journal of Operational Research, Elsevier, vol. 294(1), pages 206-218.
    2. Luis Lorenzo & Javier Arroyo, 2022. "Analysis of the cryptocurrency market using different prototype-based clustering techniques," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-46, December.
    3. Francisco de A. T. Carvalho & Antonio Irpino & Rosanna Verde & Antonio Balzanella, 2022. "Batch Self-Organizing Maps for Distributional Data with an Automatic Weighting of Variables and Components," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 343-375, July.
    4. Dias, Sónia & Brito, Paula, 2017. "Off the beaten track: A new linear model for interval data," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1118-1130.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arroyo, Javier & Maté, Carlos, 2009. "Forecasting histogram time series with k-nearest neighbours methods," International Journal of Forecasting, Elsevier, vol. 25(1), pages 192-207.
    2. Fenner, Trevor & Levene, Mark & Loizou, George, 2010. "Predicting the long tail of book sales: Unearthing the power-law exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2416-2421.
    3. Drago, Carlo, 2015. "Exploring the Community Structure of Complex Networks," MPRA Paper 81024, University Library of Munich, Germany.
    4. Philip Hans Franses & Max Welz, 2022. "Evaluating heterogeneous forecasts for vintages of macroeconomic variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 829-839, July.
    5. Gerhold, Stefan & Gülüm, I. Cetin, 2019. "Peacocks nearby: Approximating sequences of measures," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2406-2436.
    6. Xuejun Zhao & Ruihao Zhu & William B. Haskell, 2022. "Learning to Price Supply Chain Contracts against a Learning Retailer," Papers 2211.04586, arXiv.org.
    7. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Marie Ernst & Yvik Swan, 2022. "Distances Between Distributions Via Stein’s Method," Journal of Theoretical Probability, Springer, vol. 35(2), pages 949-987, June.
    9. Crimaldi, Irene & Dai Pra, Paolo & Louis, Pierre-Yves & Minelli, Ida G., 2019. "Synchronization and functional central limit theorems for interacting reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 70-101.
    10. Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
    11. Lima Neto, Eufrásio de A. & de Carvalho, Francisco de A.T., 2010. "Constrained linear regression models for symbolic interval-valued variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 333-347, February.
    12. Paolo Giordani, 2015. "Lasso-constrained regression analysis for interval-valued data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 5-19, March.
    13. Fei Liu & L. Billard, 2022. "Partition of Interval-Valued Observations Using Regression," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 55-77, March.
    14. Leandro Nascimento, 2022. "Bounded arbitrage and nearly rational behavior," Papers 2212.02680, arXiv.org, revised Jul 2023.
    15. Giacomo Aletti & Caterina May & Piercesare Secchi, 2012. "A Functional Equation Whose Unknown is $\mathcal{P}([0,1])$ Valued," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1207-1232, December.
    16. Patrick Marsh, 2019. "The role of information in nonstationary regression," Discussion Papers 19/04, University of Nottingham, Granger Centre for Time Series Econometrics.
    17. White, Staci A. & Herbei, Radu, 2015. "A Monte Carlo approach to quantifying model error in Bayesian parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 168-181.
    18. Laura Azzimonti & Francesca Ieva & Anna Maria Paganoni, 2013. "Nonlinear nonparametric mixed-effects models for unsupervised classification," Computational Statistics, Springer, vol. 28(4), pages 1549-1570, August.
    19. Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
    20. Hoang, Lê Nguyên & Soumis, François & Zaccour, Georges, 2019. "The return function: A new computable perspective on Bayesian–Nash equilibria," European Journal of Operational Research, Elsevier, vol. 279(2), pages 471-485.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:9:y:2015:i:2:p:143-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.