IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v8y2014i3p287-302.html
   My bibliography  Save this article

Principal differential analysis of the Aneurisk65 data set

Author

Listed:
  • Matilde Dalla Rosa
  • Laura Sangalli
  • Simone Vantini

Abstract

We explore the use of principal differential analysis as a tool for performing dimensional reduction of functional data sets. In particular, we compare the results provided by principal differential analysis and by functional principal component analysis in the dimensional reduction of three synthetic data sets, and of a real data set concerning 65 three-dimensional cerebral geometries, the AneuRisk65 data set. The analyses show that principal differential analysis can provide an alternative and effective representation of functional data, easily interpretable in terms of exponential, sinusoidal, or damped-sinusoidal functions and providing a different insight to the functional data set under investigation. Moreover, in the analysis of the AneuRisk65 data set, principal differential analysis is able to detect interesting features of the data, such as the rippling effect of the vessel surface, that functional principal component analysis is not able to detect. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Matilde Dalla Rosa & Laura Sangalli & Simone Vantini, 2014. "Principal differential analysis of the Aneurisk65 data set," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 287-302, September.
  • Handle: RePEc:spr:advdac:v:8:y:2014:i:3:p:287-302
    DOI: 10.1007/s11634-014-0175-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11634-014-0175-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11634-014-0175-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sangalli, Laura M. & Secchi, Piercesare & Vantini, Simone & Veneziani, Alessandro, 2009. "A Case Study in Exploratory Functional Data Analysis: Geometrical Features of the Internal Carotid Artery," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 37-48.
    2. Wang, Shanshan & Jank, Wolfgang & Shmueli, Galit & Smith, Paul, 2008. "Modeling Price Dynamics in eBay Auctions Using Differential Equations," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1100-1118.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pini, Alessia & Spreafico, Lorenzo & Vantini, Simone & Vietti, Alessandro, 2019. "Multi-aspect local inference for functional data: Analysis of ultrasound tongue profiles," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 162-185.
    2. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Slaets, Leen & Claeskens, Gerda & Silverman, Bernard W., 2013. "Warping Functional Data in R and C via a Bayesian Multiresolution Approach," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i03).
    2. Fan-Osuala, Onochie & Zantedeschi, Daniel & Jank, Wolfgang, 2018. "Using past contribution patterns to forecast fundraising outcomes in crowdfunding," International Journal of Forecasting, Elsevier, vol. 34(1), pages 30-44.
    3. Sangalli, Laura M. & Secchi, Piercesare & Vantini, Simone & Vitelli, Valeria, 2010. "k-mean alignment for curve clustering," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1219-1233, May.
    4. Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.
    5. Marco Stefanucci & Laura M. Sangalli & Pierpaolo Brutti, 2018. "PCA‐based discrimination of partially observed functional data, with an application to AneuRisk65 data set," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 246-264, August.
    6. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    7. Zhiqiang (Eric) Zheng & Paul A. Pavlou & Bin Gu, 2014. "Latent Growth Modeling for Information Systems: Theoretical Extensions and Practical Applications," Information Systems Research, INFORMS, vol. 25(3), pages 547-568, September.
    8. Yunhan Li & J. Scott Shonkwiler, 2021. "Assessing the Role of Ordering in Sequential English Auctions – Evidence from the Online Western Video Market Auction," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(1), pages 90-105, January.
    9. Epifanio, Irene, 2016. "Functional archetype and archetypoid analysis," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 24-34.
    10. Galvani, Marta & Torti, Agostino & Menafoglio, Alessandra & Vantini, Simone, 2021. "FunCC: A new bi-clustering algorithm for functional data with misalignment," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    11. Marco Stefanucci & Stefano Mazzuco, 2022. "Analysing cause‐specific mortality trends using compositional functional data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 61-83, January.
    12. Snježana Majstorović & Kristian Sabo & Johannes Jung & Matija Klarić, 2018. "Spectral methods for growth curve clustering," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 715-737, September.
    13. Usset, Joseph & Staicu, Ana-Maria & Maity, Arnab, 2016. "Interaction models for functional regression," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 317-329.
    14. Dass, Mayukh & Reddy, Srinivas K. & Iacobucci, Dawn, 2014. "A Network Bidder Behavior Model in Online Auctions: A Case of Fine Art Auctions," Journal of Retailing, Elsevier, vol. 90(4), pages 445-462.
    15. Deqing Wang & Yan Xu & Lingyun He & Rongyan Liu, 2018. "Spatial and Temporal Differences in the Relationships between Residents’ Income and Consumption in China: A Dynamic Analysis Using Functional Data Analysis," Sustainability, MDPI, vol. 10(12), pages 1-25, December.
    16. Gianluca Sottile & Giada Adelfio, 2019. "Clusters of effects curves in quantile regression models," Computational Statistics, Springer, vol. 34(2), pages 551-569, June.
    17. Piercesare Secchi & Simone Vantini & Valeria Vitelli, 2015. "Analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 279-300, July.
    18. Rafael Meléndez & Ramón Giraldo & Víctor Leiva, 2020. "Sign, Wilcoxon and Mann-Whitney Tests for Functional Data: An Approach Based on Random Projections," Mathematics, MDPI, vol. 9(1), pages 1-11, December.
    19. Simone Vantini, 2012. "On the definition of phase and amplitude variability in functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 676-696, December.
    20. James Ramsay, 2015. "Discussion of Secchi, Vantini and Vitelli paper," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 301-304, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:8:y:2014:i:3:p:287-302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.