IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v18y2024i4d10.1007_s11634-023-00559-1.html
   My bibliography  Save this article

Profile-based latent class distance association analyses for sparse tables:application to the attitude of European citizens towards sustainable tourism

Author

Listed:
  • Francesca Bassi

    (University of Padova)

  • José Fernando Vera

    (Faculty of Sciences, University of Granada)

  • Juan Antonio Marmolejo Martín

    (Faculty of Social and Legal Sciences, University of Granada)

Abstract

Social and behavioural sciences often deal with the analysis of associations for cross-classified data. This paper focuses on the study of the patterns observed on European citizens regarding their attitude towards sustainable tourism, specifically their willingness to change travel and tourism habits to be more sustainable. The data collected the intention to comply with nine sustainable actions; answers to these questions generated individual profiles; moreover, European country belonging is reported. Therefore, unlike a variable-oriented approach, here we are interested in a person-oriented approach through profiles. Some traditional methods are limited in their performance when using profiles, for example, by sparseness of the contingency table. We removed many of these limitations by using a latent class distance association model, clustering the row profiles into classes and representing these together with the categories of the response variable in a low-dimensional space. We showed, furthermore, that an easy interpretation of associations between clusters’ centres and categories of a response variable can be incorporated in this framework in an intuitive way using unfolding. Results of the analyses outlined that citizens mostly committed to an environmentally friendly behavior live in Sweden and Romania; citizens less willing to change their habits towards a more sustainable behavior live in Belgium, Cyprus, France, Lithuania and the Netherlands. Citizens preparedness to change habits however depends also on their socio-demographic characteristics such as gender, age, occupation, type of community where living, household size, and the frequency of travelling before the Covid-19 pandemic.

Suggested Citation

  • Francesca Bassi & José Fernando Vera & Juan Antonio Marmolejo Martín, 2024. "Profile-based latent class distance association analyses for sparse tables:application to the attitude of European citizens towards sustainable tourism," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(4), pages 953-980, December.
  • Handle: RePEc:spr:advdac:v:18:y:2024:i:4:d:10.1007_s11634-023-00559-1
    DOI: 10.1007/s11634-023-00559-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-023-00559-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-023-00559-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:18:y:2024:i:4:d:10.1007_s11634-023-00559-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.