IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v18y2024i4d10.1007_s11634-023-00546-6.html
   My bibliography  Save this article

MLE for the parameters of bivariate interval-valued model

Author

Listed:
  • S. Yaser Samadi

    (Southern Illinois University)

  • L. Billard

    (University of Georgia)

  • Jiin-Huarng Guo

    (National Pingtung University)

  • Wei Xu

    (Capital One)

Abstract

With contemporary data sets becoming too large to analyze the data directly, various forms of aggregated data are becoming common. The original individual data are points, but after aggregation the observations are interval-valued (e.g.). While some researchers simply analyze the set of averages of the observations by aggregated class, it is easily established that approach ignores much of the information in the original data set. The initial theoretical work for interval-valued data was that of Le-Rademacher and Billard (J Stat Plan Infer 141:1593–1602, 2011), but those results were limited to estimation of the mean and variance of a single variable only. This article seeks to redress the limitation of their work by deriving the maximum likelihood estimator for the all important covariance statistic, a basic requirement for numerous methodologies, such as regression, principal components, and canonical analyses. Asymptotic properties of the proposed estimators are established. The Le-Rademacher and Billard results emerge as special cases of our wider derivations.

Suggested Citation

  • S. Yaser Samadi & L. Billard & Jiin-Huarng Guo & Wei Xu, 2024. "MLE for the parameters of bivariate interval-valued model," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(4), pages 827-850, December.
  • Handle: RePEc:spr:advdac:v:18:y:2024:i:4:d:10.1007_s11634-023-00546-6
    DOI: 10.1007/s11634-023-00546-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-023-00546-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-023-00546-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:18:y:2024:i:4:d:10.1007_s11634-023-00546-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.