Relating brand confusion to ad similarities and brand strengths through image data analysis and classification
Author
Abstract
Suggested Citation
DOI: 10.1007/s11634-017-0282-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rocci, Roberto & Vichi, Maurizio, 2008. "Two-mode multi-partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1984-2003, January.
- Daniel Baier & Ines Daniel & Sarah Frost & Robert Naundorf, 2012. "Image data analysis and classification in marketing," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 253-276, December.
- Akinori Okada & Tadashi Imaizumi, 1997. "Asymmetric multidimensional scaling of two-mode three-way proximities," Journal of Classification, Springer;The Classification Society, vol. 14(2), pages 195-224, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Atsuho Nakayama & Daniel Baier, 2020. "Predicting brand confusion in imagery markets based on deep learning of visual advertisement content," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 927-945, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Atsuho Nakayama & Daniel Baier, 2020. "Predicting brand confusion in imagery markets based on deep learning of visual advertisement content," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 927-945, December.
- Fernández, D. & Arnold, R. & Pledger, S., 2016. "Mixture-based clustering for the ordered stereotype model," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 46-75.
- Aurore Lomet & Gérard Govaert & Yves Grandvalet, 2018. "Model selection for Gaussian latent block clustering with the integrated classification likelihood," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 489-508, September.
- J. Vera & Rodrigo Macías & Willem Heiser, 2013. "Cluster Differences Unfolding for Two-Way Two-Mode Preference Rating Data," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 370-396, October.
- Eleni Matechou & Ivy Liu & Daniel Fernández & Miguel Farias & Bergljot Gjelsvik, 2016. "Biclustering Models for Two-Mode Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 611-624, September.
- Gérard Govaert & Mohamed Nadif, 2018. "Mutual information, phi-squared and model-based co-clustering for contingency tables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 455-488, September.
- Giuseppe Bove & Akinori Okada, 2018. "Methods for the analysis of asymmetric pairwise relationships," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 5-31, March.
- Carlo Cavicchia & Maurizio Vichi & Giorgia Zaccaria, 2022. "Gaussian mixture model with an extended ultrametric covariance structure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 399-427, June.
- Ioan I. Gâf-Deac & Mohammad Jaradat & Florina Bran & Raluca Florentina Crețu & Daniel Moise & Svetlana Platagea Gombos & Teodora Odett Breaz, 2022. "Similarities and Proximity Symmetries for Decisions of Complex Valuation of Mining Resources in Anthropically Affected Areas," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
- Laura Bocci & Donatella Vicari, 2019. "ROOTCLUS: Searching for “ROOT CLUSters” in Three-Way Proximity Data," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 941-985, December.
- Álvarez de Toledo, Pablo & Núñez, Fernando & Usabiaga, Carlos, 2018. "Matching and clustering in square contingency tables. Who matches with whom in the Spanish labour market," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 135-159.
- J. Fernando Vera & Rodrigo Macías, 2017. "Variance-Based Cluster Selection Criteria in a K-Means Framework for One-Mode Dissimilarity Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 275-294, June.
- Francesca Martella & Maurizio Vichi, 2012. "Clustering microarray data using model-based double K -means," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(9), pages 1853-1869, April.
- Kemmawadee Preedalikit & Daniel Fernández & Ivy Liu & Louise McMillan & Marta Nai Ruscone & Roy Costilla, 2024. "Row mixture-based clustering with covariates for ordinal responses," Computational Statistics, Springer, vol. 39(5), pages 2511-2555, July.
- Daniel Fernández & Radim J. Sram & Miroslav Dostal & Anna Pastorkova & Hans Gmuender & Hyunok Choi, 2018. "Modeling Unobserved Heterogeneity in Susceptibility to Ambient Benzo[ a ]pyrene Concentration among Children with Allergic Asthma Using an Unsupervised Learning Algorithm," IJERPH, MDPI, vol. 15(1), pages 1-18, January.
- Mansour Zarrin & Jan Schoenfelder & Jens O. Brunner, 2022. "Homogeneity and Best Practice Analyses in Hospital Performance Management: An Analytical Framework," Health Care Management Science, Springer, vol. 25(3), pages 406-425, September.
- Saburi, S. & Chino, N., 2008. "A maximum likelihood method for an asymmetric MDS model," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4673-4684, June.
- Daniel Fernández & Richard Arnold & Shirley Pledger & Ivy Liu & Roy Costilla, 2019. "Finite mixture biclustering of discrete type multivariate data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 117-143, March.
- Adelaide Freitas & Eloísa Macedo & Maurizio Vichi, 2021. "An empirical comparison of two approaches for CDPCA in high-dimensional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1007-1031, September.
More about this item
Keywords
Brand confusion; Confusion experiment; Image data analysis and classification; Multinomial logit model; Two-mode hierarchical cluster analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:12:y:2018:i:1:d:10.1007_s11634-017-0282-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.