Principal component analysis for histogram-valued data
Author
Abstract
Suggested Citation
DOI: 10.1007/s11634-016-0255-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shapiro, Arnold F., 2009. "Fuzzy random variables," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 307-314, April.
- Billard L. & Diday E., 2003. "From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 470-487, January.
- J. Le-Rademacher & L. Billard, 2013. "Principal component histograms from interval-valued observations," Computational Statistics, Springer, vol. 28(5), pages 2117-2138, October.
- Sun Makosso-Kallyth & Edwin Diday, 2012. "Adaptation of interval PCA to symbolic histogram variables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(2), pages 147-159, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Michael Greenacre & Patrick J. F Groenen & Trevor Hastie & Alfonso Iodice d’Enza & Angelos Markos & Elena Tuzhilina, 2023. "Principal component analysis," Economics Working Papers 1856, Department of Economics and Business, Universitat Pompeu Fabra.
- Liu, Jicheng & Lin, Xiangmin, 2019. "Empirical analysis and strategy suggestions on the value-added capacity of photovoltaic industry value chain in China," Energy, Elsevier, vol. 180(C), pages 356-366.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Meiling Chen & Huiwen Wang & Zhongfeng Qin, 2015. "Principal component analysis for probabilistic symbolic data: a more generic and accurate algorithm," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 59-79, March.
- Miguel de Carvalho & Gabriel Martos, 2022. "Modeling interval trendlines: Symbolic singular spectrum analysis for interval time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 167-180, January.
- Gil, Maria Angeles & Gonzalez-Rodriguez, Gil & Colubi, Ana & Montenegro, Manuel, 2007. "Testing linear independence in linear models with interval-valued data," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3002-3015, March.
- Drago, Carlo, 2015.
"Exploring the Community Structure of Complex Networks,"
MPRA Paper
81024, University Library of Munich, Germany.
- Drago, Carlo, 2016. "Exploring the Community Structure of Complex Networks," ETA: Economic Theory and Applications 244529, Fondazione Eni Enrico Mattei (FEEM).
- Carlo Drago, 2016. "Exploring the Community Structure of Complex Networks," Working Papers 2016.57, Fondazione Eni Enrico Mattei.
- Philip Hans Franses & Max Welz, 2022.
"Evaluating heterogeneous forecasts for vintages of macroeconomic variables,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 829-839, July.
- Franses, Ph.H.B.F. & Welz, M., 2018. "Evaluating heterogeneous forecasts for vintages of macroeconomic variables," Econometric Institute Research Papers EI2018-47, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Dias, Sónia & Brito, Paula & Amaral, Paula, 2021. "Discriminant analysis of distributional data via fractional programming," European Journal of Operational Research, Elsevier, vol. 294(1), pages 206-218.
- A. Pedro Duarte Silva & Peter Filzmoser & Paula Brito, 2018. "Outlier detection in interval data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 785-822, September.
- Gholamreza Hesamian & Jalal Chachi, 2015. "Two-sample Kolmogorov–Smirnov fuzzy test for fuzzy random variables," Statistical Papers, Springer, vol. 56(1), pages 61-82, February.
- J. Le-Rademacher & L. Billard, 2013. "Principal component histograms from interval-valued observations," Computational Statistics, Springer, vol. 28(5), pages 2117-2138, October.
- Mbairadjim Moussa, A. & Sadefo Kamdem, J. & Terraza, M., 2014.
"Fuzzy value-at-risk and expected shortfall for portfolios with heavy-tailed returns,"
Economic Modelling, Elsevier, vol. 39(C), pages 247-256.
- A. Mbairadjim Moussa & J. Sadefo Kamdem & M. Terraza, 2014. "Fuzzy value-at-risk and expected shortfall for portfolios with heavy-tailed returns," Post-Print hal-02901791, HAL.
- Alfred Mbairadjim Moussa & Jules Sadefo Kamdem, 2022.
"A fuzzy multifactor asset pricing model,"
Annals of Operations Research, Springer, vol. 313(2), pages 1221-1241, June.
- Jules Sadefo-Kamdem & Alfred Mbairadjim Moussa, 2022. "A fuzzy multifactor asset pricing model," Post-Print hal-03325600, HAL.
- Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
- Lima Neto, Eufrásio de A. & de Carvalho, Francisco de A.T., 2010. "Constrained linear regression models for symbolic interval-valued variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 333-347, February.
- Antonio Balzanella & Antonio Irpino, 2020. "Spatial prediction and spatial dependence monitoring on georeferenced data streams," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 101-128, March.
- Paolo Giordani, 2015. "Lasso-constrained regression analysis for interval-valued data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 5-19, March.
- Hao, Peng & Guo, Junpeng, 2017. "Constrained center and range joint model for interval-valued symbolic data regression," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 106-138.
- Fei Liu & L. Billard, 2022. "Partition of Interval-Valued Observations Using Regression," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 55-77, March.
- Mbairadjim Moussa, A. & Sadefo Kamdem, J. & Shapiro, A.F. & Terraza, M., 2014.
"CAPM with fuzzy returns and hypothesis testing,"
Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 40-57.
- A. Mbairadjim Moussa & J. Sadefo Kamdem & A.F. Shapiro & M. Terraza, 2014. "CAPM with fuzzy returns and hypothesis testing," Post-Print hal-02901727, HAL.
- de Andrés-Sánchez, Jorge & González-Vila Puchades, Laura, 2017. "The valuation of life contingencies: A symmetrical triangular fuzzy approximation," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 83-94.
- Christiane Guinot & Denis Malvy & Jean-François Schémann & Filipe Afonso & Raja Haddad & Edwin Diday, 2015. "Strategies evaluation in environmental conditions by symbolic data analysis: application in medicine and epidemiology to trachoma," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 107-119, March.
More about this item
Keywords
Principal components; Histogram observations; Polytopes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:11:y:2017:i:2:d:10.1007_s11634-016-0255-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.