IDEAS home Printed from https://ideas.repec.org/a/sfr/efruam/v9y2019i2p181-204.html
   My bibliography  Save this article

Macroeconomic Reverse Stress Testing: An Early-Warning System for Spanish Banking Regulators. Analysis Based on the 2008 Global Financial Crisis / Prueba de resistencia inversa Macroeconómica: una prueba de alerta temprana para los reguladores bancarios españoles. Análisis basado en la crisis financiera global de 2008

Author

Listed:
  • Cristófoli, María Elizabeth

    (Banco de España, Madrid, España)

  • García Fronti, Javier

    (Facultad de Ciencias Económicas, Córdoba, Argentina, Universidad de Buenos Aires.)

Abstract

This paper presents a methodology that helps regulators to identify early-warning alerts regarding the stability of the financial system. It is a macroeconomic Reverse Stress Testing analysis which examines the interrelationships between different factors in the financial system during an economic crisis period. Archimedean copulas (Gumbel copula) were applied in the modelling of these interactions, showing the interdependence of specific factors. The methodology is applied using four factors: Bank loans to the insurance sector, Spanish exports, the Energy Price Index in Spain, and the growth rate of the Stock Price Index. First, each factor was projected for three years into the future. After that, each factor was calculated to identify the probability distribution that best fitted its projected data. Copula parameters were computed, and each alert level parameter for scethe financial system was established. Finally, an exhaustive analysis of the results was conducted. / Este documento presenta una metodología que ayuda a los reguladores a identificar alertas tempranas sobre la estabilidad del sistema financiero. Es un análisis de Pruebas de Resistencia Inversa macroeconómica que examina las interrelaciones entre diferentes factores en el sistema financiero durante un período de crisis económica. Se aplicaron cópulas arquimedianas (cópula de Gumbel) en el modelado de estas interacciones, mostrando la interdependencia de factores específicos. La metodología se aplica utilizando cuatro factores: los préstamos bancarios al sector de seguros, las exportaciones españolas, el Índice de Precios de la Energía en España y la tasa de crecimiento del Índice de Precios de las Acciones. Primero, se proyectó el comportamiento futuro de cada factor por tres años. Luego, se analizó cada factor para identificar la distribución de probabilidad que mejor se ajustaba a los datos proyectados. Se calculó el parámetro de la cópula y se estableció el nivel de alerta de cada parámetro para el sistema financiero. Finalmente, se realizó un análisis exhaustivo de los resultados.

Suggested Citation

  • Cristófoli, María Elizabeth & García Fronti, Javier, 2019. "Macroeconomic Reverse Stress Testing: An Early-Warning System for Spanish Banking Regulators. Analysis Based on the 2008 Global Financial Crisis / Prueba de resistencia inversa Macroeconómica: una pru," Estocástica: finanzas y riesgo, Departamento de Administración de la Universidad Autónoma Metropolitana Unidad Azcapotzalco, vol. 9(2), pages 181-204, julio-dic.
  • Handle: RePEc:sfr:efruam:v:9:y:2019:i:2:p:181-204
    as

    Download full text from publisher

    File URL: http://estocastica.azc.uam.mx/index.php/re/article/view/121/95
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Grundke & Kamil Pliszka, 2018. "A macroeconomic reverse stress test," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 1093-1130, May.
    2. Ruodu Wang & Liang Peng & Jingping Yang, 2013. "Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities," Finance and Stochastics, Springer, vol. 17(2), pages 395-417, April.
    3. Amira Dridi, 2015. "On Reverse Stress Testing for Worst Case Scenarios: An Application to Credit Risk Modeling of Tunisian Economic Sectors," International Journal of Economic Sciences, International Institute of Social and Economic Sciences, vol. 4(2), pages 40-56, June.
    4. Thomas Breuer & Martin Jandacka & Klaus Rheinberger & Martin Summer, 2009. "How to Find Plausible, Severe and Useful Stress Scenarios," International Journal of Central Banking, International Journal of Central Banking, vol. 5(3), pages 205-224, September.
    5. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Montesi & Giovanni Papiro & Massimiliano Fazzini & Alessandro Ronga, 2020. "Stochastic Optimization System for Bank Reverse Stress Testing," JRFM, MDPI, vol. 13(8), pages 1-44, August.
    2. Ahn, Dohyun & Kim, Kyoung-Kuk & Kwon, Eunji, 2023. "Multivariate stress scenario selection in interbank networks," Journal of Economic Dynamics and Control, Elsevier, vol. 154(C).
    3. Tian, Maoxi & El Khoury, Rim & Alshater, Muneer M., 2023. "The nonlinear and negative tail dependence and risk spillovers between foreign exchange and stock markets in emerging economies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    4. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    5. Sun, Xiaolei & Liu, Chang & Wang, Jun & Li, Jianping, 2020. "Assessing the extreme risk spillovers of international commodities on maritime markets: A GARCH-Copula-CoVaR approach," International Review of Financial Analysis, Elsevier, vol. 68(C).
    6. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    7. Marcel Wollschlager & Rudi Schafer, 2015. "Impact of non-stationarity on estimating and modeling empirical copulas of daily stock returns," Papers 1506.08054, arXiv.org.
    8. Nevrla, Matěj, 2020. "Systemic risk in European financial and energy sectors: Dynamic factor copula approach," Economic Systems, Elsevier, vol. 44(4).
    9. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    10. Xisong Jin, 2018. "How much does book value data tell us about systemic risk and its interactions with the macroeconomy? A Luxembourg empirical evaluation," BCL working papers 118, Central Bank of Luxembourg.
    11. Thibaut Lux & Antonis Papapantoleon, 2016. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Papers 1610.09734, arXiv.org, revised Nov 2018.
    12. Jörg Schwiebert, 2016. "Multinomial choice models based on Archimedean copulas," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 333-354, July.
    13. Dissem, Sonia & Lobez, Frederic, 2020. "Correlation between the 2014 EU-wide stress tests and the market-based measures of systemic risk," Research in International Business and Finance, Elsevier, vol. 51(C).
    14. Abdelaziz Rouabah & John Theal, 2010. "Stress testing: The impact of shocks on the capital needs of the Luxembourg banking sector," BCL working papers 47, Central Bank of Luxembourg.
    15. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    16. Zongwu Cai & Guannan Liu & Wei Long & Xuelong Luo, 2024. "Semiparametric Conditional Mixture Copula Models with Copula Selection," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202401, University of Kansas, Department of Economics, revised Jan 2024.
    17. Elberg, Christina & Hagspiel, Simeon, 2015. "Spatial dependencies of wind power and interrelations with spot price dynamics," European Journal of Operational Research, Elsevier, vol. 241(1), pages 260-272.
    18. Mariusz Czekala & Zbigniew Kurylek, 2021. "Inversions Distribution and Testing Correlation Changes for Rates of Return," European Research Studies Journal, European Research Studies Journal, vol. 0(3B), pages 633-650.
    19. Liu, Zhenhua & Zhang, Huiying & Ding, Zhihua & Lv, Tao & Wang, Xu & Wang, Deqing, 2022. "When are the effects of economic policy uncertainty on oil–stock correlations larger? Evidence from a regime-switching analysis," Economic Modelling, Elsevier, vol. 114(C).
    20. Ahmed, Osama & Serra, Teresa, 2015. "Evaluate the economic consequences of revenue insurance programs in Spain using copula models. The case of orange and apple," 2015 Conference, August 9-14, 2015, Milan, Italy 212522, International Association of Agricultural Economists.

    More about this item

    Keywords

    Reverse Stress Testing; Financial Stability; Time Series; Copulas. / prueba de resistencia inversa; estabilidad financiera; series de tiempo; copulas.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfr:efruam:v:9:y:2019:i:2:p:181-204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Estocástica: finanzas y riesgo (email available below). General contact details of provider: https://edirc.repec.org/data/dauaumx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.