IDEAS home Printed from https://ideas.repec.org/a/sfr/efruam/v4y2014i1p9-32.html
   My bibliography  Save this article

Modelación del clima bajo un proceso estocástico de reversión a la media estacional / Modeling weather under a seasonal mean reversion stochastic process

Author

Listed:
  • Tellez Gaytán, Jesús Cuauhtémoc

    (Universidad Autónoma del Carmen, Facultad de Ciencias Económico Administrativas)

  • Serrano Acevedo, María Eugenia

    (Universidad Autónoma de Bucaramanga, Facultad de Ingenierías Administrativas)

  • Rico Arias, Jaime Ángel

    (Universidad Autónoma de Bucaramanga, Facultad de Ingenierías Administrativas)

Abstract

El presente documento modela la temperatura diaria para el estado de Campeche a través de un proceso estocástico de reversión a la media estacional; el cual es una extensión al proceso Ornstein-Uhlenbeck, comúnmente utilizado para modelar las tasas de interés. El componente determinista del proceso describe el comportamiento de la temperatura que revierte a una media dinámica tipo senoidal; en tanto que el componente estocástico es descrito por el movimiento browniano, en donde se considera que los cambios en la temperatura se comportan bajo una distribución gaussiana. El documento sigue las metodologías de Alaton et al. (2002) quienes modelan la temperatura promedio diaria de Estocolmo, y de Bhowan (2003) quien modela la temperatura de Pretoria para valorar una permuta financiera sobre clima. La investigación tiene su importancia en la valoración de derivados climáticos, la cual requiere primeramente de un modelo que describa la evolución de la temperatura, toda vez que éstos han registrado un creciente volumen de operación para la cobertura del riesgo volumétrico. Seguidamente, se busca contribuir a la intención de la Ley del Desarrollo Rural Sustentable de México y del Plan Nacional de Desarrollo 2012-2018, en materia de coberturas de riesgos de mercado y de eventos climáticos en las actividades productivas del sector rural. / This article aims to model Campeche’s daily temperature under a seasonal mean reverting stochastic process, which is an extension of Ornstein-Uhlenbeck’s process for modeling interest rates. The model’s trend component describes the temperature behavior which reverts to a dynamic mean of a sinusoid type function. Meanwhile, the stochastic component evolves as a Brownian motion, in which daily temperature changes are distributed as a Gaussian process. The article follows Alaton et al. (2002) who model the daily average temperature of Stockholm, and Bhowan (2003) who models Pretoria’s daily temperature to pricing a climate swap derivative purpose. The importance of this research is founded on the increasing use of weather derivatives to hedge volumetric risk, where pricing derivatives requires an appropriate description of climate evolution. Also, it is expected to contribute to the Mexican Law of Sustainable Rural Development and the National Development Plan, related to managing market and climate risks for agricultural activities in the rural sector.

Suggested Citation

  • Tellez Gaytán, Jesús Cuauhtémoc & Serrano Acevedo, María Eugenia & Rico Arias, Jaime Ángel, 2014. "Modelación del clima bajo un proceso estocástico de reversión a la media estacional / Modeling weather under a seasonal mean reversion stochastic process," Estocástica: finanzas y riesgo, Departamento de Administración de la Universidad Autónoma Metropolitana Unidad Azcapotzalco, vol. 4(1), pages 9-32, enero-jun.
  • Handle: RePEc:sfr:efruam:v:4:y:2014:i:1:p:9-32
    as

    Download full text from publisher

    File URL: http://estocastica.azc.uam.mx/index.php/re/article/view/9/7
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Zapranis & A. Alexandridis, 2008. "Modelling the Temperature Time-dependent Speed of Mean Reversion in the Context of Weather Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(4), pages 355-386.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    4. Turvey, Calum G., 1999. "Weather Derivatives And Specific Event Risk," 1999 Annual meeting, August 8-11, Nashville, TN 21550, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Peter Alaton & Boualem Djehiche & David Stillberger, 2002. "On modelling and pricing weather derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 1-20.
    6. Karyl Leggio & Donald Lien, 2002. "Hedging gas bills with weather derivatives," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 26(1), pages 88-100, March.
    7. Vedenov, Dmitry V. & Barnett, Barry J., 2004. "Efficiency of Weather Derivatives as Primary Crop Insurance Instruments," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 29(3), pages 1-17, December.
    8. Geyser, J.M. & van de Venter, T.W.G., 2001. "Hedging Maize Yield With Weather Derivatives," Working Papers 18067, University of Pretoria, Department of Agricultural Economics, Extension and Rural Development.
    9. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turvey, Calum G. & Norton, Michael, 2008. "An Internet-Based Tool for Weather Risk Management," Agricultural and Resource Economics Review, Cambridge University Press, vol. 37(1), pages 63-78, April.
    2. Hainaut, Donatien, 2019. "Hedging of crop harvest with derivatives on temperature," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 98-114.
    3. Tomas Björk & Magnus Blix & Camilla Landén, 2006. "On Finite Dimensional Realizations For The Term Structure Of Futures Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 281-314.
    4. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
    5. Richard Jordan & Charles Tier, 2016. "Asymptotic Approximations For Pricing Derivatives Under Mean-Reverting Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-31, August.
    6. Leunga Njike, Charles Guy & Hainaut, Donatien, 2024. "Affine Heston model style with self-exciting jumps and long memory," LIDAM Discussion Papers ISBA 2024001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    8. Musshoff, Oliver & Hirschauer, Norbert, 2008. "Hedging von Mengenrisiken in der Landwirtschaft – Wie teuer dürfen „ineffektive“ Wetterderivate sein?," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 57(05), pages 1-12.
    9. Aur'elien Alfonsi & Nerea Vadillo, 2023. "Risk valuation of quanto derivatives on temperature and electricity," Papers 2310.07692, arXiv.org, revised Apr 2024.
    10. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    11. Makushkin, Mikhail & Lapshin, Victor, 2023. "Dynamic Nelson–Siegel model for market risk estimation of bonds: Practical implementation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 69, pages 5-27.
    12. Wolfgang Karl Hardle and Maria Osipenko, 2012. "Spatial Risk Premium on Weather Derivatives and Hedging Weather Exposure in Electricity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    13. Sun, Baojing & van Kooten, G. Cornelis, 2014. "Financial Weather Options for Crop Production," Working Papers 164323, University of Victoria, Resource Economics and Policy.
    14. Baojing Sun & Changhao Guo & G. Cornelis van Kooten, 2013. "Weather Derivatives and Crop Insurance in China," Working Papers 2013-02, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    15. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    16. Albrecher, Hansjoerg & Guillaume, Florence & Schoutens, Wim, 2013. "Implied liquidity: Model sensitivity," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 48-67.
    17. Markus Stowasser, 2011. "Modelling rain risk: a multi-order Markov chain model approach," Journal of Risk Finance, Emerald Group Publishing, vol. 13(1), pages 45-60, December.
    18. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    19. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    20. Jan Baldeaux & Fung & Katja Ignatieva & Eckhard Platen, 2015. "A Hybrid Model for Pricing and Hedging of Long-dated Bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(4), pages 366-398, September.

    More about this item

    Keywords

    Modelación estocástica; Derivados financieros; Riesgo de clima / Stochastic Modeling; Financial Derivatives; Weather Risk;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfr:efruam:v:4:y:2014:i:1:p:9-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Estocástica: finanzas y riesgo (email available below). General contact details of provider: https://edirc.repec.org/data/dauaumx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.