IDEAS home Printed from https://ideas.repec.org/a/sfr/efruam/v10y2020i1p77-101.html
   My bibliography  Save this article

Red neuronal autorregresiva difusa tipo Sugeno con funciones de membresía triangular y trapezoidal: una aplicación al pronóstico de índices del mercado bursátil / Sugeno Type Fuzzy Nonlinear Autoregressive Neural Networks with Triangular and Trapezoidal Membership Functions: An Application to Forecast the Stock Market Index

Author

Listed:
  • Medina Reyes, José Eduardo

    (Escuela Superior de Economia, Instituto Politécnico Nacional)

  • Castro Pérez, Judith Jazmin

    (Escuela Superior de Economia, Instituto Politécnico Nacional)

  • Cabrera Llanos, Agustín Ignacio

    (Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional)

  • Cruz Aké, Salvador

    (Escuela Superior de Economia, Instituto Politécnico Nacional)

Abstract

La presente investigación desarrolla una comparación entre la nueva Red Neuronal Autorregresiva no Lineal Difusa y la Red Neuronal Autorregresiva para evaluar el pronóstico de Índices bursátiles. Para ello se aplica la metodología a la rentabilidad de cuatro índices accionarios, IPC, IBEX 35, S&P 500 y el Nikkei 225 en formato diario desde enero de 2015 hasta diciembre de 2018, adjuntando los primeros cinco días de enero de 2019 para pronóstico fuera de muestra. Se estimó una Red Neural Autorregresiva No Lineal con tres rezagos y con algoritmo de aprendizaje Bayesiano y la Red Neuronal Difusa fue estimada con tres rezagos y con el algoritmo Backpropagation. Los resultados muestran que los modelos propuestos generan un mejor pronóstico dentro y fuera de la muestra en comparación con la Red Neuronal Autorregresiva No Lineal. Lo anterior es consecuencia de que las redes neuronales pueden aprender de la dinámica de las series temporales y si se añade la teoría difusa, también pueden aprender de la incertidumbre inherente a las variables financieras, esta situación hace que el método propuesto sea mejor que la red neuronal tradicional. / This article compares the results obtained when forecasting the Stock Market Index applying a proposed Fuzzy Nonlinear Autoregressive Neuronal Network with those obtained using the Autoregressive Neuronal Network. For this purpose, the methodology is applied to four stock indices, IPC, IBEX 35, S&P 500 and the Nikkei 225 using daily data from January 2015 to December 2018, the first five financial days of January 2019 are added to carry out a forecast outside the sample. A Nonlinear Autoregressive Neural Network with three lags and Bayesian learning algorithms and the Fuzzy Nonlinear Autoregressive Neural Networks with three lags and a Backpropagation algorithm were used to calculate a forecast. The results have shown that the models proposed generate better forecasts considering in-sample and out-sample tests than the Nonlinear Autoregressive Neural Network. It was shown that the neural networks can learn from the dynamics of time series, and if fuzzy theory is added, they can also learn from the uncertainty around financial variables. This indicates that method proposed yields better results than the traditional network method.

Suggested Citation

  • Medina Reyes, José Eduardo & Castro Pérez, Judith Jazmin & Cabrera Llanos, Agustín Ignacio & Cruz Aké, Salvador, 2020. "Red neuronal autorregresiva difusa tipo Sugeno con funciones de membresía triangular y trapezoidal: una aplicación al pronóstico de índices del mercado bursátil / Sugeno Type Fuzzy Nonlinear Autoregre," Estocástica: finanzas y riesgo, Departamento de Administración de la Universidad Autónoma Metropolitana Unidad Azcapotzalco, vol. 10(1), pages 77-101, enero-jun.
  • Handle: RePEc:sfr:efruam:v:10:y:2020:i:1:p:77-101
    as

    Download full text from publisher

    File URL: http://estocastica.azc.uam.mx/index.php/re/article/view/130/180
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Judith Jazmin Castro Pérez & José Eduardo Medina Reyes, 2021. "Fuzzy Portfolio Selection with Sugeno Type Fuzzy Neural Network: Investing in the Mexican Stock Market," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(TNEA), pages 1-25, Septiembr.

    More about this item

    Keywords

    Red neuronal difusa; Función de pertenencia triangular; Función de pertenencia trapezoidal; Series de tiempo difusas / Fuzzy Nonlinear Autoregressive Neuronal Network; Triangular Membership Function; Trapezoidal Membership Function; Fuzzy Time Series;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfr:efruam:v:10:y:2020:i:1:p:77-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Estocástica: finanzas y riesgo (email available below). General contact details of provider: https://edirc.repec.org/data/dauaumx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.