IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v16y2021itneaa9.html
   My bibliography  Save this article

Fuzzy Portfolio Selection with Sugeno Type Fuzzy Neural Network: Investing in the Mexican Stock Market

Author

Listed:
  • Judith Jazmin Castro Pérez

    (Universidad Tecnológica de México, México)

  • José Eduardo Medina Reyes

    (Instituto Politécnico Nacional, México)

Abstract

El objetivo de esta investigación es comparar los rendimientos de la metodología propuesta denominada como Portafolios Difusos con Redes Neurales Difusas Tipo Sugeno contra la teoría de portafolios de Markowitz; buscando identificar el mejor modelo de inversión. Para ello, se estudian diez acciones del mercado mexicano en formato diario desde el 2 de enero 2015 hasta el 15 de mayo de 2020, con el fin de obtener portafolios de inversión semanales desde el 15 de mayo hasta el 12 de junio de 2020. El principal resultado es que nuestra metodología reconoce el comportamiento de cada acción, genera una mejor gestión del riesgo y proporciona mayor rentabilidad en comparación con las técnicas tradicionales. La recomendación es evaluar otras acciones y mercados para verificar la eficiencia del modelo, la limitación es que un análisis fundamental debe preceder a la herramienta, y la originalidad es la nueva técnica propuesta. La principal conclusión es que el modelo de selección de cartera basado en redes neuronales difusas generó dos portafolios sin rendimientos negativos durante el periodo, la ganancia acumulada obtenida fue de hasta un 15.68%.

Suggested Citation

  • Judith Jazmin Castro Pérez & José Eduardo Medina Reyes, 2021. "Fuzzy Portfolio Selection with Sugeno Type Fuzzy Neural Network: Investing in the Mexican Stock Market," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(TNEA), pages 1-25, Septiembr.
  • Handle: RePEc:imx:journl:v:16:y:2021:i:tnea:a:9
    as

    Download full text from publisher

    File URL: https://www.remef.org.mx/index.php/remef/article/view/583
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Hui-Kuang, 2005. "Weighted fuzzy time series models for TAIEX forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 609-624.
    2. Medina Reyes, José Eduardo & Castro Pérez, Judith Jazmin & Cabrera Llanos, Agustín Ignacio & Cruz Aké, Salvador, 2020. "Red neuronal autorregresiva difusa tipo Sugeno con funciones de membresía triangular y trapezoidal: una aplicación al pronóstico de índices del mercado bursátil / Sugeno Type Fuzzy Nonlinear Autoregre," Estocástica: finanzas y riesgo, Departamento de Administración de la Universidad Autónoma Metropolitana Unidad Azcapotzalco, vol. 10(1), pages 77-101, enero-jun.
    3. Masoud Rahiminezhad Galankashi & Farimah Mokhatab Rafiei & Maryam Ghezelbash, 2020. "Portfolio selection: a fuzzy-ANP approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-34, December.
    4. Markowitz, Harry M, 1991. "Foundations of Portfolio Theory," Journal of Finance, American Finance Association, vol. 46(2), pages 469-477, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adler Haymans Manurung & Nera Marinda Machdar & Jadongan Sijabat & Amran Manurung, 2024. "The Construction of a Portfolio Using Varying Methods and the Effects of Variables on Portfolio Return," International Journal of Economics and Financial Issues, Econjournals, vol. 14(1), pages 233-241, January.
    2. Adler Haymans MANURUNG & Fadh Fauzi HIBATULLAH & Jadongan SIJABAT, 2023. "Stock Selection Using Roy Criteria to Construct a Portfolio and the Effects of Variables on Portfolio Return," Journal of Finance and Investment Analysis, SCIENPRESS Ltd, vol. 12(3), pages 1-2.
    3. Markowitz, Harry, 2014. "Mean–variance approximations to expected utility," European Journal of Operational Research, Elsevier, vol. 234(2), pages 346-355.
    4. Kristjan Liivamägi, 2015. "Investor Education and Portfolio Diversification on the Stock Market," Research in Economics and Business: Central and Eastern Europe, Tallinn School of Economics and Business Administration, Tallinn University of Technology, vol. 7(1).
    5. Elie Matta & Jean McGuire, 2008. "Too Risky to Hold? The Effect of Downside Risk, Accumulated Equity Wealth, and Firm Performance on CEO Equity Reduction," Organization Science, INFORMS, vol. 19(4), pages 567-580, August.
    6. Narayan, Paresh Kumar & Sharma, Susan Sunila, 2011. "New evidence on oil price and firm returns," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3253-3262.
    7. JinHyo Joseph Yun & EuiSeob Jeong & Xiaofei Zhao & Sung Deuk Hahm & KyungHun Kim, 2019. "Collective Intelligence: An Emerging World in Open Innovation," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    8. Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
    9. Penikas, Henry, 2010. "Copula-Models in Foreign Exchange Risk-Management of a Bank," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 17(1), pages 62-87.
    10. Prakash, Arun J. & Chang, Chun-Hao & Pactwa, Therese E., 2003. "Selecting a portfolio with skewness: Recent evidence from US, European, and Latin American equity markets," Journal of Banking & Finance, Elsevier, vol. 27(7), pages 1375-1390, July.
    11. Riikka Sievänen & Hannu Rita & Bert Scholtens, 2017. "European Pension Funds and Sustainable Development: Trade‐Offs between Finance and Responsibility," Business Strategy and the Environment, Wiley Blackwell, vol. 26(7), pages 912-926, November.
    12. Muhammad Amjed Iqbal & Muhammad Rizwan & Azhar Abbas & Muhammad Sohail Amjad Makhdum & Rakhshanda Kousar & Muhammad Nazam & Abdus Samie & Nasir Nadeem, 2021. "A Quest for Livelihood Sustainability? Patterns, Motives and Determinants of Non-Farm Income Diversification among Agricultural Households in Punjab, Pakistan," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    13. Azra Zaimovic & Adna Omanovic & Almira Arnaut-Berilo, 2021. "How Many Stocks Are Sufficient for Equity Portfolio Diversification? A Review of the Literature," JRFM, MDPI, vol. 14(11), pages 1-30, November.
    14. Jérôme Héricourt & Clément Nedoncelle, 2015. "Relative Real Exchange-Rate Volatility, Multi-Destination Firms and Trade: Micro Evidence and Aggregate Implications," Working Papers 2015-03, CEPII research center.
    15. Allen, D.E. & McAleer, M.J. & Powell, R.J. & Singh, A.K., 2015. "Down-side Risk Metrics as Portfolio Diversification Strategies across the GFC," Econometric Institute Research Papers EI2015-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Briec, Walter & Kerstens, Kristiaan, 2010. "Portfolio selection in multidimensional general and partial moment space," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 636-656, April.
    17. Duc Hong Vo, 2021. "Portfolio Optimization and Diversification in China: Policy Implications for Vietnam and Other Emerging Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(1), pages 223-238, January.
    18. Taras Bodnar & Wolfgang Schmid, 2008. "A test for the weights of the global minimum variance portfolio in an elliptical model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 67(2), pages 127-143, March.
    19. Cheng, Ching-Hsue & Wei, Liang-Ying, 2014. "A novel time-series model based on empirical mode decomposition for forecasting TAIEX," Economic Modelling, Elsevier, vol. 36(C), pages 136-141.
    20. Firoozye, Nikan & Tan, Vincent & Zohren, Stefan, 2023. "Canonical portfolios: Optimal asset and signal combination," Journal of Banking & Finance, Elsevier, vol. 154(C).

    More about this item

    Keywords

    Teoría de Portafolios; Teoría Difusa; Red Neuronal Difusa; Mercados Financieros; Teoría de Portafolios de Markowitz;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • E7 - Macroeconomics and Monetary Economics - - Macro-Based Behavioral Economics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:16:y:2021:i:tnea:a:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.