IDEAS home Printed from https://ideas.repec.org/a/scn/financ/y2016i5p105-114.html
   My bibliography  Save this article

Сравнительный Анализ Стратегий Хеджирования Фьючерсами Портфеля Ценных Бумаг // Comparative Analysis Of Strategies For Hedging A Securities Portfolio With Futures

Author

Listed:
  • V. Lakshina V.

    (HSE University)

  • K. Lapshina A.

    (HSE University)

  • В. Лакшина В.

    (НИУ Высшая Школа Экономики)

  • К. Лапшина А.

    (НИУ Высшая Школа Экономики)

Abstract

Hedging is one of the most popular strategies of the market risk management. The main purpose of hedging is to reduce the volatility (or variability) of the yield on the portfolio composed of spot assets and hedging tools. The hedging tools may consist of futures contracts, options and off-exchange tools such as forwards and swaps. Hedging strategies using futures contracts are the most simple ones and therefore very common in practice. The purpose of the study is to compare four hedging strategies where a share is a spot asset and a futures contract is a hedging asset. The results of comparison showed the strategy based on the calculation of the internal rate of return to be the most effective. According to the other two criteria, the above strategy and the least squares method turned out to be the best. A correction for heteroscedasticity made with the use of the maximum likelihood method did not improve the hedging performance of shares. This work can be developed in several directions, namely: consideration of option hedging strategies; adding other spot assets, e.g. exchange commodities or currencies, to the portfolio; taking into account the degree of the investor’s risk aversion in calculating the hedge ratio; introduction of transaction costs into the model. Хеджирование является одной из наиболее популярных стратегий управления рыночным риском. Основная цель хеджирования - снижение волатильности, или изменчивости, доходности портфеля, составленного из спотовых активов и хеджирующих инструментов. В качестве хеджирующих инструментов могут выступать фьючерсные контракты, опционы, а также внебиржевые инструменты, такие как форварды и свопы. Стратегии хеджирования с применением фьючерсов наиболее просты и поэтому весьма распространены на практике. Целью исследования является сравнение четырех стратегий хеджирования, в которых спотовым активом выступает акция, а хеджирующим - фьючерс. По результатам сравнения наиболее эффективной оказалась стратегия, основанная на расчете внутренней нормы доходности. По другим двум критериям лучшими оказались та же стратегия и метод наименьших квадратов. Поправка на гетероскедастичность, осуществленная с помощью метода максимального правдоподобия, не позволила улучшить показатели хеджирования акций. Данная работа может быть продолжена в нескольких направлениях, в том числе рассмотрение стратегий хеджирования опционами; добавление в портфель других спотовых активов, например биржевых товаров, валют; учет степени неприятия риска инвестора при расчете коэффициента хеджирования; введение транзакционных издержек в модель.

Suggested Citation

  • V. Lakshina V. & K. Lapshina A. & В. Лакшина В. & К. Лапшина А., 2016. "Сравнительный Анализ Стратегий Хеджирования Фьючерсами Портфеля Ценных Бумаг // Comparative Analysis Of Strategies For Hedging A Securities Portfolio With Futures," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 20(5), pages 105-114.
  • Handle: RePEc:scn:financ:y:2016:i:5:p:105-114
    as

    Download full text from publisher

    File URL: https://financetp.fa.ru/jour/article/viewFile/292/219.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Лакшина Валерия Владимировна, 2016. "Динамическое Хеджирование С Учетом Степени Неприятия Риска," Higher School of Economics Economic Journal Экономический журнал Высшей школы экономики, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 20(1), pages 156-174.
    2. Massimiliano Caporin & Michael McAleer, 2012. "Do We Really Need Both Bekk And Dcc? A Tale Of Two Multivariate Garch Models," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 736-751, September.
    3. Hun Y. Park & Anil K. Bera, 1987. "Interest‐Rate Volatility, Basis Risk and Heteroscedasticity in Hedging Mortgages," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 15(2), pages 79-97, June.
    4. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wenting & He, Xie & Hamori, Shigeyuki, 2022. "Volatility spillover and investment strategies among sustainability-related financial indexes: Evidence from the DCC-GARCH-based dynamic connectedness and DCC-GARCH t-copula approach," International Review of Financial Analysis, Elsevier, vol. 83(C).
    2. Gatfaoui, Hayette, 2013. "Translating financial integration into correlation risk: A weekly reporting's viewpoint for the volatility behavior of stock markets," Economic Modelling, Elsevier, vol. 30(C), pages 776-791.
    3. Boldanov, Rustam & Degiannakis, Stavros & Filis, George, 2016. "Time-varying correlation between oil and stock market volatilities: Evidence from oil-importing and oil-exporting countries," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 209-220.
    4. R. Khalfaoui & M. Boutahar, 2012. "Portfolio Risk Evaluation: An Approach Based on Dynamic Conditional Correlations Models and Wavelet Multi-Resolution Analysis," Working Papers halshs-00793068, HAL.
    5. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    6. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    7. Pedersen, Rasmus Søndergaard, 2016. "Targeting Estimation Of Ccc-Garch Models With Infinite Fourth Moments," Econometric Theory, Cambridge University Press, vol. 32(2), pages 498-531, April.
    8. Wei, Yu & Wang, Yizhi & Vigne, Samuel A. & Ma, Zhenyu, 2023. "Alarming contagion effects: The dangerous ripple effect of extreme price spillovers across crude oil, carbon emission allowance, and agriculture futures markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    9. Toshiaki Ogawa & Masato Ubukata & Toshiaki Watanabe, 2020. "Stock Return Predictability and Variance Risk Premia around the ZLB," IMES Discussion Paper Series 20-E-09, Institute for Monetary and Economic Studies, Bank of Japan.
    10. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    11. Yue-Jun Zhang & Han Zhang, 2023. "Volatility Forecasting of Crude Oil Market: Which Structural Change Based GARCH Models have Better Performance?," The Energy Journal, , vol. 44(1), pages 175-194, January.
    12. Hartwell, Christopher A., 2014. "The impact of institutional volatility on financial volatility in transition economies : a GARCH family approach," BOFIT Discussion Papers 6/2014, Bank of Finland, Institute for Economies in Transition.
    13. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    14. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016. "Connecting VIX and Stock Index ETF," Tinbergen Institute Discussion Papers 16-010/III, Tinbergen Institute, revised 23 Jan 2017.
    15. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2010. "Analyzing and forecasting volatility spillovers, asymmetries and hedging in major oil markets," Energy Economics, Elsevier, vol. 32(6), pages 1445-1455, November.
    16. Jin Guo & Tetsuji Tanaka, 2020. "The Effectiveness of Self-Sufficiency Policy: International Price Transmissions in Beef Markets," Sustainability, MDPI, vol. 12(15), pages 1-23, July.
    17. repec:diw:diwwpp:dp1672 is not listed on IDEAS
    18. Sabbaghi, Omid & Sabbaghi, Navid, 2011. "Carbon Financial Instruments, thin trading, and volatility: Evidence from the Chicago Climate Exchange," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(4), pages 399-407.
    19. David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CARF F-Series CARF-F-197, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2010.
    20. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
    21. Javed Farrukh & Podgórski Krzysztof, 2017. "Tail Behavior and Dependence Structure in the APARCH Model," Journal of Time Series Econometrics, De Gruyter, vol. 9(2), pages 1-48, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:financ:y:2016:i:5:p:105-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://financetp.fa.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.